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APPENDIX A

PROOF OF THEOREM 1

We first briefly demonstrate the principle of stochastic ker-

nel PCA. It is a centralized learning algorithm that determines

a low-rank estimate of the kernel matrix K by solving a

composite optimization problem

min
Z∈RN×N

1

2
||Z−K||2F + λ||Z||∗.

The optimal solution to this problem is

Z∗ =
∑

λi>λ

(λi − λ)uiu
⊤
i =

s∑

i=1

(λi − λ)uiu
⊤
i ,

where λi and ui are the i-th eigenvalue and eigenvector of K,

respectively. A stochastic optimization method is developed to

solve this problem as follows. In the t-th iteration, an unbiased

estimate ξt of K is constructed based on a random feature

method. The updated solution Zt is then computed based

on the current solution Zt−1 and ξt via stochastic proximal

gradient descent

Zt = argmin
Z∈RN×N

1

2
||Z− Zt−1||2F + ηt〈Z− Zt−1,Zt−1 − ξt〉

+ ηtλ||Z||∗,
where ηt is the learning rate in the t-th iteration. Zt has a

closed-form expression, i.e.,

Zt =
∑

λi,t>ηtλ

(λi,t − ηtλ)ũi,tũ
⊤
i,t, (1)

where λi,t and ũi,t are the i-th eigenvalue and eigenvector of

the matrix (1− ηt)Zt−1 + ηtξt.
We then show that the update rule

Bt =
[√

σ2
1,t − ηtλu1,t, ...,

√
σ2
I,t − ηtλuI,t

]
, (2)

is actually equivalent to that in Eq. (1). For the estimate ξt,

it can be decomposed as ξt = 1
D
AtA

⊤
t according to the

random feature method. Next, it is proved that Zt = BtB
⊤
t

via mathematical induction. Initially, Z0 = 0 and B0 = 0.

Assume that Zt−1 = Bt−1B
⊤
t−1. (1 − ηt)Zt−1 + ηtξt can

then be written as

(1− ηt)Zt−1 + ηtξt = (1− ηt)Bt−1B
⊤
t−1 +

ηt
D
AtA

⊤
t

= WtW
⊤
t .

Hence, in Eq. (1), λi,t and ũi,t are also the i-th eigenvalue

and eigenvector of the matrix WtW
⊤
t . Moreover, λi,t = σ2

i,t

and ũi,t = ui,t where σi,t and ui,t are the i-th singular value

and singular vector of Wt. respectively. According to Eq. (2),

Zt can be rewritten as Zt = BtB
⊤
t , which completes the

mathematical induction.

Similar to Bt−1 = [B⊤
t−1[1], ...,B

⊤
t−1[M ]⊤], the updated es-

timate Bt can also be rewritten in the form of M submatrices,

i.e., Bt = [B⊤
t [1], ...,B

⊤
t [M ]⊤] where Bt[m] is the updated

submatrix at user device m.

Since in stochastic kernel PCA Zt converges to Z∗ =∑s
i=1 (λi − λ)uiu

⊤
i , Bt converges to

B∗ =
[√

λ1 − λu1, ...,
√

λs − λus

]
.
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Before the proof, we first define F (Z) = 1
2E[||Z− ξ||2F ]

and ft(Z) =
1
2 ||Z− ξt||2F . For a µ-strongly convex function

l(Z), if l(Z1) ≥ l(Z2), then

l(Z1)− l(Z2) ≥
µ

2
||Z1 − Z2||2F . (3)

Let Bt+1B
⊤
t+1 = Zt+1 and B̂t+1B̂

⊤

t+1 = Z∗
t+1 where Z∗

t+1

is the optimal solution to the optimization problem

min
Z∈RN×N

1

2
||Z− Zt||2F + ηt〈Z− Zt,∇ft(Zt)〉+ ηtλ||Z||∗.

(4)

The following lemma is a key step in this proof.

Lemma 1. Before FEA converges, the following inequality

holds, i.e.,

1

2
||Zt+1 − Zt||2F + ηt〈Zt+1 − Zt,∇ft(Zt)〉+ ηtλ||Zt+1||∗

≤1

2
||Z∗ − Zt||2F + ηt〈Z∗ − Zt,∇ft(Zt)〉+ ηtλ||Z∗||∗,

(5)

where Z∗ = B∗B∗⊤ is the optimal solution to

min
Z∈RN×N

F (Z) + λ||Z||∗.

Proof. The objective function in (4) can be rewritten as

1

2
||Z− Zt||2F + ηt〈Z− Zt,∇ft(Zt)〉+ ηtλ||Z||∗

=
1

2
||Z− [(1− ηt)Zt + ηtξt]||2F + ηtλ||Z||∗ −

η2t
2
||∇ft(Zt)||2F .

Since
η2

t

2 ||∇ft(Zt)||2F is a constant, we can only consider

l(Z) =
1

2
||Z− [(1− ηt)Zt + ηtξt]||2F + ηλ||Z||∗

in the following part of the proof.
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Now we first assume that l(Z∗) ≤ l(Zt+1), then we have

l(Zt+1)− l(Z∗
t+1) ≥ l(Z∗)− l(Z∗

t+1) ≥
µ

2
||Z∗

t+1 − Z∗||2F .
(6)

Let Rt denote (1− ηt)Zt + ηtξt, then l(Zt+1)− l(Z∗
t+1) can

be expanded as

l(Zt+1)− l(Z∗
t+1)

=
1

2
(||Zt+1 −Rt||F − ||Z∗

t+1 −Rt||F )
(||Zt+1 −Rt||F + ||Z∗

t+1 −Rt||F )
+ ηtλ(||Zt+1||∗ − ||Z∗

t+1||∗)

≤1

2
||Zt+1 − Z∗

t+1||F (||Zt+1 − Z∗
t+1||F + 2||Z∗

t+1 −Rt||F )
+ ηtλ||Zt+1 − Z∗

t+1||∗
(7)

It is well known that given a matrix M the following inequal-

ity holds for its nuclear norm and its Frobenius norm, i.e.,

||M||2∗ ≤ rank(M)||M||2F . By this inequality, we have

||Zt+1 − Z∗
t+1||∗ ≤

√
r||Zt+1 − Z∗

t+1||F ≤
√
rNǫ, (8)

where r is the rank of (Zt+1 − Z∗
t+1). Substitute (8) into (7),

we have

l(Zt+1)− l(Z∗
t+1) ≤

1

2
N2ǫ2+nǫ||Z∗

t+1 −Rt||F + ηtλ
√
rnǫ.

Since ||Z∗
t+1 −Rt||F is a constant, this upper bound of

l(Zt+1)− l(Z∗
t+1) can become arbitrarily small if ǫ is arbitrar-

ily small. Hence, according to (6), ||Z∗
t+1 − Z∗||2F can also be

arbitrarily small. However, this contradicts that ||Z∗
t+1 − Z∗||2F

cannot become arbitrarily small before the convergence of

FEA. Therefore, the assumption l(Z∗) ≤ l(Zt+1) does not

hold. In other words, l(Z∗) ≥ l(Zt+1) is satisfied before the

convergence of FEA.

The rest part then follows the proof of Theorem 1 in [1].

Based on Lemma 1 and the property of strongly convex

function in (3), we have

1

2
||Zt+1 − Zt||2F + ηt〈Zt+1 − Zt,∇ft(Zt)〉+ ηtλ||Zt+1||∗

≤1

2
||Z∗ − Zt||2F + ηt〈Z∗ − Zt,∇ft(Zt)〉+ ηtλ||Z∗||∗

− 1

2
||Z∗ − Zt+1||2F .

(9)

Similarly, according to (3) we have

1

2
||Zt − Z∗||2F ≤ F (Zt) + λ||Zt||∗ − F (Z∗)− λ||Z∗||∗.

Since F (Z) is 1-strongly convex, then

1

2
||Zt − Z∗||2F

≤〈Zt − Z∗,∇F (Zt)〉 −
1

2
||Zt − Z∗||2F + λ(||Zt||∗ − ||Z∗||∗)

=〈Zt − Z∗,∇ft(Zt)〉 − λ||Z∗||∗ −
1

2ηt
||Zt − Z∗||2F

+ λ||Zt||∗ −
1

2
||Zt − Z∗||2F +

1

2ηt
||Zt − Z∗||2F

+ 〈∇F (Zt)−∇ft(Zt),Zt − Z∗〉.

Based on (9), we eventually obtain that

1

2
||Zt − Z∗||2F

≤〈Zt − Zt+1,∇ft(Zt)〉 − λ||Zt+1||∗ −
1

2ηt
||Zt+1 − Zt||2F

− 1

2ηt
||Z∗ − Zt+1||2F + λ||Zt||∗ +

1− ηt
2ηt

||Zt − Z∗||2F
+ 〈∇F (Zt)−∇ft(Zt),Zt − Z∗〉

≤ηt
2
||∇ft(Zt)||2F − 1

2ηt
||Zt+1 − Z∗||2F + λ(||Zt||∗ − ||Zt+1||∗)

+
1− ηt
2ηt

||Zt − Z∗||2F + 〈∇F (Zt)−∇ft(Zt),Zt − Z∗〉
(10)

By substituting δt = 〈ξt − K,Zt − Z∗〉 and C2 =
maxt∈[T ] ||Zt − ξt||2F into (10),

||Zt+1 − Z∗||2F ≤η2tC
2 + 2ηtδt + 2ληt (||Zt||∗ − ||Zt+1||∗)

+ (1− 2ηt) ||Zt − Z∗||2F .
(11)

The inequality in (11) is the same as the result of Lemma 1

in [1]. Thus, the following lemmas 1 from [1] can be directly

utilized to derive a probability bound for ||Zt+1 − Z∗||2F .

Lemma 2 (Lemma 2 in [1]). Define γ = maxt∈[T ] ||Zt||∗.

By setting ηt =
2
t
, an upper bound of ||Zt+1 − Z∗||2F can be

written as

||ZT+1 − Z∗||2F

≤ 2

T (T − 1)

[
2

T∑

t=2

(t− 1)δt −
T∑

t=2

(t− 1)||Zt − Z∗||2F

]

+
4(C2 + λγ)

T
.

The upper bound of
∑T

t=2 (t− 1)δt in Lemma 2 is then

provided in Lemma 3.

Lemma 3 (Lemma 3 in [1]). Assume ||ξt −K||F ≤ G, and

||Zt − Z∗||F ≤ H , ∀t > 2. With a probability at least 1 − δ,∑T
t=2 (t− 1)δt is upper bounded by

T∑

t=2

(t− 1)δt ≤
1

2

T∑

t=2

(t− 1)||Zt − Z∗||2F + 2G2τ(T − 1)

+
2

3
GH(T − 1)τ +GH(T − 1),

where τ = log ⌈2 log
2
T⌉

δ
.

Based on Lemma 2 and Lemma 3, the following upper

bound of ||ZT+1 − Z∗||2F holds with a probability at least

1− δ,

||ZT+1 − Z∗||2F ≤ 4

T

(
C2 + λγ + 2G2τ +

2

3
GHτ +GH

)
.

(12)

In Lemma 4, the upper bounds for C, γ, G, and H are

provided.

1These lemmas can be found in the supplementary material of [1] that can
be downloaded from https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf

https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf
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Lemma 4 (Lemma 4 in [1]). Assume ||ξ||F ≤ L. By setting

ηt =
2
t
, it can be obtained that

C2 ≤ 10L2, γ ≤ 2Lmax
t∈[T ]

√
rt, G = 2L, and H = 3L,

where rt is the rank of Zt.

By substituting the upper bounds in Lemma 4 into (12)

and replacing ZT+1 and Z∗ with BT+1B
⊤
T+1 and B∗B∗⊤,

respectively, we eventually obtain

||BT+1B
⊤
T+1 −B∗B∗⊤||2F

N2

≤ 8

T

[
λ
L

n2
max
t∈[T ]

√
rt +

L2

n2

(
8 + 6 log

⌈2 log2 T ⌉
δ

)]
= O(

1

T
).
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In the t-th iteration of FEA, the following procedure is exe-

cuted for Qt iterations. The central server broadcasts a vector

cq to all M user devices. User device m computes a local vec-

tor dm = Wt[m]⊤Wt[m]cq and then uploads dm to the cen-

tral server. Since Wt[m] = [
√

ηt

D
At[m],

√
1− ηtBt−1[m]] ∈

R
Nm×(rt−1+D), Wt[m]⊤Wt[m] is a matrix with dimensions

of (rt−1 + D) × (rt−1 + D). Hence, the dimensions of

both cq and dm also equal (rt−1 + D). As a result, the

communication cost equals 2QtM(rt−1 + D) in the t-th
iteration of FEA, which shows that the communication cost

is linear to M(rt−1 +D).
For the centralized method, the user devices first uploads

{Wt[m],m ∈ M} to the central server, the central server

then sends the updated submatrix Bt[m] to user device m for

all m ∈ M. Thus, its communication cost equals N(rt−1 +
rt+D) in the t-th iteration of FEA. Thus, CELA reduces the

communication cost of FEA with a rate

ηt = 1− 2QtM(rt−1 +D)

N(rt−1 + rt +D)
≥ 1− 2MQt

N
.

Note that Qt ≤ rt−1 + D according to the analysis in

Section IV-A. Eventually, we have

1− 2M(rt−1 +D)

N
≤ ηt.
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Define K = UΛU⊤, and P = UΛ
1

2 . The low-rank

approximation of K with rank s is denoted as Ks = UΛsU
⊤,

and Ps = UΛ
1

2

s where the diagonal of Λs contains the s
largest eigenvalues of K while its rest diagonal entries are all

zero. The output of FEA at iteration t is an estimation of Ks,

denoted as K̃t, and K̃t = P̃tP̃
⊤

t .

The following two lemmas will be used in the proof of

Theorem 3.

Lemma 5. Given K̃t, the following inequality holds with a

probability at least 1 − δ for any rank k projection matrix

Π ∈ R
N×N ,

Tr(Π(Ks − K̃t)) ≤ O(

√
s

tδ
N)

Proof. Since Π is a rank-k projection matrix, it is obvious

that Tr(Π(Ks− K̃t)) ≤ ||Ks − K̃t||∗ For a rank-s matrix A,

||A||2∗ ≤ s||A||2F holds for its Nuclear norm and its Frobenius

norm Hence, ||Ks − K̃t||∗ ≤ √
s||Ks − K̃t||F . By Lemma 4,

Zt converges to Z∗ at an O(N2/tδ) rate. Note Z∗ has the

same eigenvectors as Ks. Thus, K̃t constructed based on Zt

also converges to Ks at an O(N2/tδ) rate with a probability

at least 1− δ, i.e., ||Ks − K̃t||2F has an upper bound as

||Ks − K̃t||2F ≤ O(N2/tδ).

Hence, the following inequality holds with a probability of

at least 1− δ

Tr(Π(Ks − K̃t)) ≤
√
s||Ks − K̃t||F ≤ O(

√
s

tδ
N).

Lemma 6. Fix an error parameter ε ∈ (0, 1). For any rank

k projection matrix Π ∈ R
N×N ,

Tr
(
Π(K− K̃t)Π

)
≤ (ε+

k

s
)||P−ΠP||2F .

Proof. Tr (Π(K−Ks)Π) can be expanded as

Tr (Π(K−Ks)Π) = Tr
(
Π(PP⊤ −PsP

⊤
s )Π

)
.

Note that Tr
(
PP⊤ −PsP

⊤
s

)
=

∑N
i=s+1 σ

2
i (P), where

σi(P) is the i-th singular value of P. After multiplied

with a rank-k projection matrix Π, the maximal value of

Tr (Π(K−Ks)) is achieved when the largest k singular

values in {σi(P), i = s+ 1, ..., N} are kept. Hence, we have

Tr (Π(K−Ks)Π) ≤
s+k∑

i=s+1

σ2
i (P). (13)

Tr
(
Π(K− K̃t)Π

)
is then expanded as

Tr
(
Π(K− K̃t)Π

)

=Tr (Π(K−Ks)Π) + Tr
(
Π(Ks − K̃t)Π

)

≤
s+k∑

i=s+1

σ2
i (P) + Tr

(
Π(Ks − K̃t)Π

)

=

s+k∑

i=s+1

σ2
i (P) + Tr

(
Π(Ks − K̃t)

)

≤
s+k∑

i=s+1

σ2
i (P) +O(

√
s

tδ
N)

≤k

s

s+k∑

i=k+1

σ2
i (P) +O(

√
s

tδ
N),

where the first inequality comes from Eq. (13), the second

inequality comes from Lemma 5, and k ≤ s.

For
∑s+k

i=k+1 σ
2
i (P), we have

s+k∑

i=k+1

σ2
i (P) ≤

N∑

i=k+1

σ2
i (P) = ||P−Pk||2F .
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Since ||P||2F = TrK = O(N), we have ||P−Pk||2F = O(N)
Thus, O(

√
s
tδ
N) can be rewritten as ε||P−Pk||2F where ε is

still at the order of O(
√

s
tδ
). As a result, we have

Tr
(
Π(K− K̃t)Π

)
≤ (ε+

k

s
)||P−Pk||2F .

Since ||P−Pk||2F is the minimal value of ||P−ΠP||2F for

any Π, we then have

Tr
(
Π(K− K̃t)Π

)
≤ (ε+

k

s
)||P−ΠP||2F .

After completing the proofs of Lemma 5 and Lemma 6, we

then finish the rest proof of Theorem 3 as follows. It can be

obtained that

||(IN −Π)P||2F − ||(IN −Π)P̃t||2F
=Tr((IN −Π)PP⊤)− Tr((IN −Π)P̃tP̃

⊤

t )

=Tr(PP⊤ − P̃tP̃
⊤

t )− Tr(Π(PP⊤ − P̃tP̃
⊤

t )Π).

Let α = Tr(PP⊤ − P̃tP̃
⊤

t ), and then the above equation can

be rewritten as

||(IN −Π)P||2F+Tr(Π(PP⊤−P̃tP̃
⊤

t )Π) = α+||(IN −Π)P̃t||2F .

After sufficient iterations, both α and Tr(Π(PP⊤−P̃tP̃
⊤

t )Π)
are non-negative with a high probability. Thus, by Lemma 6

it holds that

||(IN −Π)P||2F
≤α+ ||(IN −Π)P̃t||2F
=||(IN −Π)P||2F +Tr(Π(PP⊤ − P̃tP̃

⊤

t )Π)

≤(1 + ε+
k

s
)||(IN −Π)P||2F .

(14)

Based on (14), Theorem 3 can be proved as follows. Let

Π = ỸtL̃tỸ
⊤

t , where Ỹt is the indicator matrix obtained

by applying a γ-approximate algorithm to P̃t, then

||(IN − ỸtL̃tỸ
⊤

t )P||2F ≤ α+ ||(IN − ỸtL̃tỸ
⊤

t )P̃t||2F
≤ α+ γ||(IN − Ỹ

∗

t L̃
∗

t Ỹ
∗⊤

t )P̃t||2F ,

where Ỹ
∗

t is the optimal indicator matrix for the linear k-

means problem on P̃t. Since γ > 1, it follows that

α+ γ||(IN − Ỹ
∗

t L̃
∗

t Ỹ
∗⊤

t )P̃t||2F
≤α+ γ||(IN −Y∗L∗Y∗⊤)P̃t||2F
≤γ(1 + ε+

k

s
)||(IN −Y∗L∗Y∗⊤)P||2F .

Thus,

||(IN − ỸtL̃tỸ
⊤

t )P||2F ≤ γ(1+ε+
k

s
)||(IN −Y∗L∗Y∗⊤)P||2F ,

which is equivalent to fK(Ỹt) ≤ γ(1 + ε+ k
s
)minY fK(Y).

APPENDIX E

DISCUSSION ON PRIVACY PRESERVATION

If the central server collects sufficient random feature vec-

tors of a data samples, then it is possible for the central server

to recover the data samples from these random features. The

reason is as follows. A random feature vector of a data sample

xi has the form cos(ω⊤xi + b) where the ω and b are known

by the central server. Since the value of ω⊤xi + b cannot be

arbitrarily large, the central server can determine the value of

ω⊤xi + b for each random feature vector if sufficient such

random features are collected. The data sample xi can be

recovered by solving a system of linear equations.

In FedKKM, the above recovering operation is infeasible,

which is proved by the following lemma.

Lemma 7. Based on the collected vectors {gq =

W⊤
t Wtcq, q = 1, ..., Q}, the central server can at most

recover the matrix W⊤
t Wt via matrix operations. Moreover,

recovering the matrix At from the matrix W⊤
t Wt is an ill-

posed problem with infinite solutions.

Proof. In FedKKM, the central server collects the vectors

{gq = W⊤
t Wtcq, q = 1, ..., Q}. If W⊤

t Wt is a full-rank

matrix, and Q equals the rank of W⊤
t Wt, the central server

can compute W⊤
t Wt based on the matrices G = [g1, ...,gQ]

and C = [c1, ..., cQ], i.e.,

W⊤
t Wt = GC−1,

where C−1 is the inverse matrix of C.

Since

W⊤
t Wt =




ηt

D
A⊤

t At

√
ηt(1−ηt)

D
A⊤

t Bt−1√
ηt(1−ηt)

D
B⊤

t−1At (1− ηt)B
⊤
t Bt−1


 ,

A⊤
t At can be recovered from W⊤

t Wt.

For a matrix At ∈ R
N×D, a matrix A′ ∈ R

N×D can be

constructed via

A′ = UoAt,

where Uo ∈ R
N×N is an arbitrary orthogonal matrix with

U⊤
o Uo = In. By this construction, it can be derived that

A′⊤A′ = A⊤
t U

⊤
o UoAt = A⊤

t At.

Since there exist infinite matrices Uo satisfying U⊤
o Uo = In,

the problem A⊤
t At = A′⊤A′ has infinite solutions. Hence,

recovering the random feature matrix At from A⊤
t At is an

ill-posed problem with infinite solutions.

By Lemma 7, the central server cannot recover At from

A⊤
t At. Without such random feature vectors, it is infeasible

for the central server to recover users’ data via matrix opera-

tions.
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