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APPENDIX A
PROOF OF THEOREM 1

We first briefly demonstrate the principle of stochastic ker-
nel PCA. It is a centralized learning algorithm that determines
a low-rank estimate of the kernel matrix K by solving a
composite optimization problem

in 51— KIiE+ A1z
min —||Z — ",
ZERNXN 2 F
The optimal solution to this problem is
Z' =) (= Nuu => (- Nuu,,

Ai>A =1

where \; and u; are the i-th eigenvalue and eigenvector of K,
respectively. A stochastic optimization method is developed to
solve this problem as follows. In the ¢-th iteration, an unbiased
estimate £, of K is constructed based on a random feature
method. The updated solution Z; is then computed based
on the current solution Z;_; and &, via stochastic proximal
gradient descent

1
Z, = argmln§\|Z —Zi |2 AL —Z 1, L1 —E,)
ZGRNXN
+ A2,
where 7, is the learning rate in the t-th iteration. Z; has a
closed-form expression, i.e.,

Z (Ai,t - Ut)\)ﬁi,tﬁiT,ta

it >MeA

7z = ey

where \; ; and u;; are the i-th eigenvalue and eigenvector of
the matrix (1 — ny)Zi—1 + &,
We then show that the update rule

B; = [\/Uf,t — AL gy s \/OF , — nt)\ul,t} , @

is actually equivalent to that in Eq. (1). For the estimate &,,
it can be decomposed as &, = %AtA;r according to the
random feature method. Next, it is proved that Z; = BtBtT
via mathematical induction. Initially, Zg = 0 and By = 0.
Assume that Z;,_; = Bt_lBtT_l. (1 — m)Zy—1 + m:€, can
then be written as

(1= m)Zo—y + &, = (1 —m)Bio1 B, + %AtA;r
=W,W,.

Hence, in Eq. (1), A;; and u;,; are also the ¢-th eigenvalue
and eigenvector of the matrix WtWtT . Moreover, \;; = 02,
and u; ; = u, ; where o;; and u; are the -th singular value

and singular vector of Wy. respectively. According to Eq. (2),
Z; can be rewritten as Z; = BtB,;r , which completes the
mathematical induction.

Similar to B,_; = [B, ;[1], ..., B, [M] 7], the updated es-
timate B; can also be rewritten in the form of M submatrices,
ie, B, = [B, [1],...,B/ [M]"] where By[m)] is the updated
submatrix at user device m.

Since in stochastic kernel PCA Z; converges to Z* =
S (A — A)wuy, By converges to

B = [V — A VA ]
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Before the proof, we first define FI(Z) = 1E[||Z — &|[3]
and fy(Z) = 3||Z — &,]|%. For a p-strongly convex function
U(Z), if I(Zy) > I(Zy), then

UZ1) ~ U(Z) > 512 — Lol 3 @

T LT
Let B,1B,,, = Z;41 and B, 1B, = Z;, | where Zj
is the optimal solution to the optimization problem

. 1
2 0In §||Z = Zil[F + 16(Z — 24, V 1(Z4)) + ne M| 2]
“

The following lemma is a key step in this proof.

Lemma 1. Before FEA converges, the following inequality
holds, i.e.,

1
§||Zt+1 = Zo||F + (Lo — Lo,V fi(Ze)) + M| Zosa ||

1, . . .
§§||Z = Zo|[7 + 02" — Ly, N f1(Ze)) + me M| 2],
Q)
where Z* = B*B*" is the optimal solution to

min F(Z) + \||Z]|...
ZERN XN

Proof. The objective function in (4) can be rewritten as

1

Sz - Zil|% + 12 — Z1, V [1(Z1)) + M| 2]«
_1 2 77t2 2
=112 = [(L = n0)Ze + &l + A2l = SV fe(Zo) -
Since §||Vft(Zt)H% is a constant, we can only consider

1
UZ)=5l1Z = [ =n)Z¢ + &)l +nAl|Z]]x

in the following part of the proof.



Now we first assume that [(Z*) <[ (Zt+1) then we have

WZiir) = UZi1y) 2 UZT) - Z" |5

(6)
Let R; denote (1 —;)Z; + n:&;, then I(Z;1) — I(Z}, ) can
be expanded as

UZit1) — UZiyy)

l( t+1 ||Zt+l

=5 (1Zee1 ~ Rlle ~ 1124~ Ralle)
(1Z021 — Roll + 11274~ Rallr)
+mMZesalle — 1ZEall)
<31Zeir — Tl (2ot — Zip ]l + 201270 — Rellr)
+ M| L1 — Zi ]|+

(7N

It is well known that given a matrix M the following inequal-
ity holds for its nuclear norm and its Frobenius norm, i.e.,
[[M][|? < rank(M)||M]||%. By this inequality, we have

Zi ||« SVrl|Zeyr — 27 ||lp < V/TPNe,  (8)
Z; ). Substitute (8) into (7),

[|Zi11 —

where r is the rank of (Z;41 —
we have

WZiy1) = UZiyy) < Ry||F +neAv/rne.

Since ||Z{,; — Ry||r is a constant, this upper bound of
U(Z¢41) —U(Z}, ) can become arbitrarily small if € is arbitrar-
ily small. Hence, according to (6), ||Z;,; — Z*||% can also be
arbitrarily small. However, this contradicts that ||Z;, ; — Z*||%,
cannot become arbitrarily small before the convergence of
FEA. Therefore, the assumption {(Z*) < [(Z;y1) does not
hold. In other words, I[(Z*) > I(Z;1) is satisfied before the
convergence of FEA. O

2N2€2 +ne||Zi,, —

The rest part then follows the proof of Theorem 1 in [1].
Based on Lemma 1 and the property of strongly convex
function in (3), we have

§||Zt+1 = Zy||% + i Zisr — 2o, V fi(Zh)) + M| Zoga ||
1, . .
§§||Z — Zy||% + (Z* — 2y, V fi(Zy)) + mN|| 27
1
- §|\Z — Zo|l7
9
Similarly, according to (3) we have
1 N * *
Sl1Ze—2 7 < F(Zt) + M| Zd] |« — F(Z7) = M|Z*]|...
Since F(Z) is 1-strongly convex, then
1 ¥
§||Zt ~-Z"|%
* 1 * *
<(Zy ~Z",VF(Z)) - 5|12, ~ Z % + A1 Zelle = 11Z7]]2)

* * 1 *
=(Zy — 27,V fi(Zy)) — N|Z7|]« _TmHZt_Z %

1 . 1 .
+FANZelle = 51120 = 2717 + Tmllzt Al

+ (VF(Zy) — Vfi(Zy),Zy — Z7).

Based on (9), we eventually obtain that

1 *
Yz -z
1
<(Zt — Zi 41, Vi(Zt)) — M| Zigr ]|« — Tl —||Zis1 — Zel|7
1. )
iz zen A+ -z
Ui
+(VF(Z,) — Vft(zt), 7, — Z*>
77 1 *
§5t||vft(zt)||% - TmHZtJrl = Z|% + M Zells — |Zs1l]x)
1_7715 *12 *
—Z"|p +(VF(Z) = Vf(Zy),Zy — Z7)
(10

By substituting 6; = (&, —
maxXe(r) ||Zt — £t||%7 into (10),
|Ziy1 — 27|17 <07 C? + 20461 + 22 (|| Zel]s — || Zosa ]
+ (1 —2m)||Z¢ — Z*| |3

K,Z, — Z*) and C? =

(11

The inequality in (11) is the same as the result of Lemma 1
in [1]. Thus, the following lemmas I from [1] can be directly
utilized to derive a probability bound for ||Z;1; — Z*||%.

Lemma 2 (Lemma 2 in [1]). Define v = max;c[ry ||Zq||+

By setting n; = 2, an upper bound of ||Zy+1 — Z*||% can be

written as
IIZT+1—Z*H%
T
T D 22 (t—1)6 ; (t —1)||Z, — Z*||%
(CQ+M)
+ T .

The upper bound of 23;2 (t—
provided in Lemma 3.

1)d; in Lemma 2 is then

Lemma 3 (Lemma 3 in [1]). Assume ||&, — K||r < G, and
|Z: — Z*||r < H, ¥Vt > 2. With a probability at least 1 — 6,
Z?:z (t — 1)6; is upper bounded by

T 1 T
(=10 <5 (t —V||Z¢ — Z*||% + 2G*7(T - 1)
t=2 t=2
2
+ SGH(T = D)7 + GH(T - 1),
[2log2T]

where T = log

Based on Lemma 2 and Lemma 3, the following upper
bound of ||Zr41 — Z*||% holds with a probability at least
1-4,

4 2
||Zr 1 — ZF||% < T(C2 + Ay +2G?7 + SGHT+GH).

(12)
In Lemma 4, the upper bounds for C, v, G, and H are
provided.

IThese lemmas can be found in the supplementary material of [1] that can
be downloaded from https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf


https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf

Lemma 4 (Lemma 4 in [1]). Assume ||&||F < L. By setting
ne = 2, it can be obtained that

C? <10L% ~ < 2Lm%\/ﬁ, G =2L, and H = 3L,
te

where ry is the rank of Z.

By substituting the upper bounds in Lemma 4 into (12)
and replacing Zr,1 and Z* with BTHB;Jr1 and B'B* ",
respectively, we eventually obtain

IBr41Bryy — BB %

N2
8 L L?

L 12 210g, T1\] _ 1
_T )\n ?elé%er (8+610g 5 7O(T).
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In the ¢-th iteration of FEA, the following procedure is exe-
cuted for Q; iterations. The central server broadcasts a vector
c, to all M user devices. User device m computes a local vec-
tor d,,, = Wi[m ]th[ ]cq and then uploads d,, to the cen-
tral server. Since W [m \/”T Ay[m], /T —=nBy_1[m]] €
RNm*(re-14+D) "W, [m ]TWt[ ] is a matrix with dimensions
of (rt—1 + D) x (rs—1 + D). Hence, the dimensions of
both ¢, and d,, also equal (r,_1 + D). As a result, the
communication cost equals 2Q:M(r:—1 + D) in the t-th
iteration of FEA, which shows that the communication cost
is linear to M (r;—1 + D).

For the centralized method, the user devices first uploads
{W¢[m],m € M]} to the central server, the central server
then sends the updated submatrix B;[m] to user device m for
all m € M. Thus, its communication cost equals N (r_; +
r¢+ D) in the ¢-th iteration of FEA. Thus, CELA reduces the
communication cost of FEA with a rate

2Q¢M(r¢—1 + D) > 2MQy
N(Tt—1+7“t+D)7 N
Note that Q; < r;—1 + D according to the analysis in
Section IV-A. Eventually, we have
2M(7’t,1 + D)
N

n=1-

1 — S 77t.
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Define K = UAUT, and P = UA%. The low-rank
approximation of1 K with rank s is denoted as K, = UASUT,
and P, = UAZ where the diagonal of A, contains the s
largest eigenvalues of K while its rest diagonal entries are all
zero. The output of FEA at 1terat10n t is an estimation of K,
denoted as Kt, and Kt = P P

The following two lemmas w111 be used in the proof of
Theorem 3.

Lemma 5. Given I~(t, the following inequality holds with a
probability at least 1 — § for any rank k projection matrix

II e RNXN,
K, - K0) < 04 [2)

Proof. Since II is a rank-k projection matrix, it is obvious
that Tr(TI(K, — K;)) < ||K, — K;||, For a rank-s matrix A,
[|A|? < s||A||% holds for its Nuclear norm and its Frobenius
norm Hence, [|K, — K¢||. < /s||Ks — K;||r. By Lemma 4,
Z, converges to Z* at an O(N?/td) rate. Note Z” has the
same eigenvectors as K. Thus, K; constructed based on Z;
also converges to K at an O(N?/t6) rate with a probability
at least 1 — 4, i.e., ||%* has an upper bound as

K — K¢||% < O(N?/t5).

Hence, the following inequality holds with a probability of
at least 1 — ¢

DK, -~ K) < VA, - Killr < 04 [20)
O

Lemma 6. Fix an error parameter ¢ € (0,1). For any rank
k projection matrix TI € RNV*N,

Tr (H(K - f{t)n) < (e+
(K - KS)H

k
2P — TIP3

Proof. Tr (11 can be expanded as
p

Tr (IH(K — K,)II) = Tt (H(PPT - PSPZ)H) :

Note that Tr (PPT—PSPD = YN, 02(P), where
c;(P) is the i-th singular value of P. After multiplied
with a rank-k projection matrix II, the maximal value of
Tr (II(K — K)) is achieved when the largest k singular
values in {c;(P),i = s+ 1,..., N} are kept. Hence, we have

s+k

> a(P).

i=s+1

Tr (T(K — K)I) < (13)

Tr (H(K - I~{t)H) is then expanded as

Tr (H(K - Rgn)

—Tr (I(K — K,)II) + Tt (H(KS - f{t)n)
s+k

< > 0P+ Tr (K, - K)m)
1=s+1
s+k

— Z o'?(P) + Tr (H(Kb - I~<t))

1=s+1

s+l<:
+01/ N
+O,/ N

where the first inequality comes from Eq. (13), the second
inequality comes from Lemma 5, and k < s.
For Zf+,f+1 o?(P), we have

| A

i= .s+1
k s+k
gf
i=k-+1

s+k N
Y. aiP)< Y of(P) =[P Py}
i=k+1 i=k+1



Since ||P||% = TrK = O(N), we have ||P — Px||%2 = O(N)
Thus, O( /5 N) can be rewritten as ¢||P — Py||3. where ¢ is
still at the order of O(,/;5). As a result, we have

Tr (H(K - f(t)n) <(e+ %)HP — P2

Since ||P — P||% is the minimal value of ||P — IIP||% for
any II, we then have

_ k
Tr (H(K - Kt)H) < (e +2)||P — 1P| 3
O

After completing the proofs of Lemma 5 and Lemma 6, we
then finish the rest proof of Theorem 3 as follows. It can be
obtained that

IOy = P[5 — [|(Ly — P[5
~ ~T
=Tr((Iy — PP ") — Tr((Iy — II)P,P, )
—Tr(PP" - B,P, ) - TW(II(PP" — P, P, )II).
~ ~T
Let a = TI'(PPT —P,P, ), and then the above equation can
be rewritten as

~ ~T ~
(Ly = TOP|[2+Te(T(PP T —B,B, )TI) = a+]|(Ly — B,

~ ~T
After sufficient iterations, both a and Tr(II(PP " —P,P, )II)
are non-negative with a high probability. Thus, by Lemma 6

it holds that
|1y — IDP||%
<a+||(Iy — I)Py|[%
= =T 14
—|l@y —mP|2 + r(PPT — B,y 1Y

k
< +e+)llIx —TPZ.

Based on (14), Theorem 3 can be proved as follows. Let

~ ~ ~T ~
II = Y:L;Y,, where Y, is the indicatoz matrix obtained
by applying a y-approximate algorithm to P, then

~ ~ ~T ~ ~ ~T ~
(I = YL Y, )P|[7 < a+[|(In = YL Y, )P|%
~k~k ~ x|~
<a+9||Iy - Y, LY, )PF,
where SNK: is the optimal indicator matrix for the linear k-
means problem on P;. Since v > 1, it follows that

~ ok ~k ~ k|~ 2
04+’7‘|(IN_YtLth )Pt“F
<a+9||(Ix = Y'LY )P|f%
k *T ok *
(14 + )y = YL Y P[3.
Thus,

T
t

N TN k kT koK
1Oy = Y LY, )P|IE < y(14e+2)[(Iv - Y'LTY DP||Z,

which is equivalent to fx (Y;) < y(1+¢+ EYminy fx(Y).

APPENDIX E
DISCUSSION ON PRIVACY PRESERVATION

If the central server collects sufficient random feature vec-
tors of a data samples, then it is possible for the central server
to recover the data samples from these random features. The
reason is as follows. A random feature vector of a data sample
x; has the form cos(w ' x; + b) where the w and b are known
by the central server. Since the value of w 'x; + b cannot be
arbitrarily large, the central server can determine the value of
w'x; + b for each random feature vector if sufficient such
random features are collected. The data sample x; can be
recovered by solving a system of linear equations.

In FedKKM, the above recovering operation is infeasible,
which is proved by the following lemma.

Lemma 7. Based on the collected vectors {g, =
W:Wth,q = 1,...,Q}, the central server can at most
recover the matrix WtT W via matrix operations. Moreover,
recovering the matrix A, from the matrix WtT W, is an ill-
posed problem with infinite solutions.

Proof. In FedKKM, the central server collects the vectors
{g, = W/ Wic,,q = 1,...,Q}. If W/ W, is a full-rank
matrix, and () equals the rank of W;r ‘W,, the central server
can compute W, W, based on the matrices G = [g,, ..., g0l
nd C = [cq, ..., cg), L.,
2
W/ W, =GC™!,

where C~! is the inverse matrix of C.

Since
LATA, VAT,
VEOSmIBT A, (1-n)Bl B,

A/] A, can be recovered from W, W,.
For a matrix A; € RV*DP a3 matrix A’ € RV*D can be
constructed via

W, W, =

A/ == UOAt7

where U, € RVY*N is an arbitrary orthogonal matrix with
UIUO = I,,. By this construction, it can be derived that

ATA' =A/U/UA, =A]A,.

Since there exist infinite matrices U, satisfying UIUO =1,,
the problem A,/ A, = A’T A’ has infinite solutions. Hence,
recovering the random feature matrix A; from AtT A, is an
ill-posed problem with infinite solutions. O

By Lemma 7, the central server cannot recover A; from
A;r A ;. Without such random feature vectors, it is infeasible
for the central server to recover users’ data via matrix opera-
tions.
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