Supplementary Material for Memory and Communication Efficient Federated Kernel k-Means

Xiaochen Zhou and Xudong Wang, Fellow, IEEE

Appendix A
 Proof of Theorem 1

We first briefly demonstrate the principle of stochastic kernel PCA. It is a centralized learning algorithm that determines a low-rank estimate of the kernel matrix \mathbf{K} by solving a composite optimization problem

$$
\min _{\mathbf{Z} \in \mathbb{R}^{N \times N}} \frac{1}{2}\|\mathbf{Z}-\mathbf{K}\|_{F}^{2}+\lambda\|\mathbf{Z}\|_{*}
$$

The optimal solution to this problem is

$$
\mathbf{Z}^{*}=\sum_{\lambda_{i}>\lambda}\left(\lambda_{i}-\lambda\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}=\sum_{i=1}^{s}\left(\lambda_{i}-\lambda\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

where λ_{i} and \mathbf{u}_{i} are the i-th eigenvalue and eigenvector of \mathbf{K}, respectively. A stochastic optimization method is developed to solve this problem as follows. In the t-th iteration, an unbiased estimate $\boldsymbol{\xi}_{t}$ of \mathbf{K} is constructed based on a random feature method. The updated solution \mathbf{Z}_{t} is then computed based on the current solution \mathbf{Z}_{t-1} and $\boldsymbol{\xi}_{t}$ via stochastic proximal gradient descent

$$
\begin{aligned}
\mathbf{Z}_{t}= & \underset{\mathbf{Z} \in \mathbb{R}^{N \times N}}{\arg \min } \frac{1}{2}\left\|\mathbf{Z}-\mathbf{Z}_{t-1}\right\|_{F}^{2}+\eta_{t}\left\langle\mathbf{Z}-\mathbf{Z}_{t-1}, \mathbf{Z}_{t-1}-\boldsymbol{\xi}_{t}\right\rangle \\
& +\eta_{t} \lambda\|\mathbf{Z}\|_{*},
\end{aligned}
$$

where η_{t} is the learning rate in the t-th iteration. \mathbf{Z}_{t} has a closed-form expression, i.e.,

$$
\begin{equation*}
\mathbf{Z}_{t}=\sum_{\lambda_{i, t}>\eta_{t} \lambda}\left(\lambda_{i, t}-\eta_{t} \lambda\right) \tilde{\mathbf{u}}_{i, t} \tilde{\mathbf{u}}_{i, t}^{\top} \tag{1}
\end{equation*}
$$

where $\lambda_{i, t}$ and $\tilde{\mathbf{u}}_{i, t}$ are the i-th eigenvalue and eigenvector of the matrix $\left(1-\eta_{t}\right) \mathbf{Z}_{t-1}+\eta_{t} \boldsymbol{\xi}_{t}$.

We then show that the update rule

$$
\begin{equation*}
\mathbf{B}_{t}=\left[\sqrt{\sigma_{1, t}^{2}-\eta_{t} \lambda} \mathbf{u}_{1, t}, \ldots, \sqrt{\sigma_{I, t}^{2}-\eta_{t} \lambda} \mathbf{u}_{I, t}\right] \tag{2}
\end{equation*}
$$

is actually equivalent to that in Eq. (1). For the estimate $\boldsymbol{\xi}_{t}$, it can be decomposed as $\boldsymbol{\xi}_{t}=\frac{1}{D} \mathbf{A}_{t} \mathbf{A}_{t}^{\top}$ according to the random feature method. Next, it is proved that $\mathbf{Z}_{t}=\mathbf{B}_{t} \mathbf{B}_{t}^{\top}$ via mathematical induction. Initially, $\mathbf{Z}_{0}=\mathbf{0}$ and $\mathbf{B}_{0}=\mathbf{0}$. Assume that $\mathbf{Z}_{t-1}=\mathbf{B}_{t-1} \mathbf{B}_{t-1}^{\top} .\left(1-\eta_{t}\right) \mathbf{Z}_{t-1}+\eta_{t} \boldsymbol{\xi}_{t}$ can then be written as

$$
\begin{aligned}
\left(1-\eta_{t}\right) \mathbf{Z}_{t-1}+\eta_{t} \boldsymbol{\xi}_{t} & =\left(1-\eta_{t}\right) \mathbf{B}_{t-1} \mathbf{B}_{t-1}^{\top}+\frac{\eta_{t}}{D} \mathbf{A}_{t} \mathbf{A}_{t}^{\top} \\
& =\mathbf{W}_{t} \mathbf{W}_{t}^{\top}
\end{aligned}
$$

Hence, in Eq. (1), $\lambda_{i, t}$ and $\tilde{\mathbf{u}}_{i, t}$ are also the i-th eigenvalue and eigenvector of the matrix $\mathbf{W}_{t} \mathbf{W}_{t}^{\top}$. Moreover, $\lambda_{i, t}=\sigma_{i, t}^{2}$ and $\tilde{\mathbf{u}}_{i, t}=\mathbf{u}_{i, t}$ where $\sigma_{i, t}$ and $\mathbf{u}_{i, t}$ are the i-th singular value
and singular vector of \mathbf{W}_{t}. respectively. According to Eq. (2), \mathbf{Z}_{t} can be rewritten as $\mathbf{Z}_{t}=\mathbf{B}_{t} \mathbf{B}_{t}^{\top}$, which completes the mathematical induction.

Similar to $\mathbf{B}_{t-1}=\left[\mathbf{B}_{t-1}^{\top}[1], \ldots, \mathbf{B}_{t-1}^{\top}[M]^{\top}\right]$, the updated estimate \mathbf{B}_{t} can also be rewritten in the form of M submatrices, i.e., $\mathbf{B}_{t}=\left[\mathbf{B}_{t}^{\top}[1], \ldots, \mathbf{B}_{t}^{\top}[M]^{\top}\right]$ where $\mathbf{B}_{t}[m]$ is the updated submatrix at user device m.

Since in stochastic kernel PCA \mathbf{Z}_{t} converges to $\mathbf{Z}^{*}=$ $\sum_{i=1}^{s}\left(\lambda_{i}-\lambda\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}, \mathbf{B}_{t}$ converges to

$$
\mathbf{B}^{*}=\left[\sqrt{\lambda_{1}-\lambda} \mathbf{u}_{1}, \ldots, \sqrt{\lambda_{s}-\lambda} \mathbf{u}_{s}\right]
$$

Appendix B
 Proof of Theorem 2

Before the proof, we first define $F(\mathbf{Z})=\frac{1}{2} \mathbb{E}\left[\|\mathbf{Z}-\boldsymbol{\xi}\|_{F}^{2}\right]$ and $f_{t}(\mathbf{Z})=\frac{1}{2}\left\|\mathbf{Z}-\boldsymbol{\xi}_{t}\right\|_{F}^{2}$. For a μ-strongly convex function $l(\mathbf{Z})$, if $l\left(\mathbf{Z}_{1}\right) \geq l\left(\mathbf{Z}_{2}\right)$, then

$$
\begin{equation*}
l\left(\mathbf{Z}_{1}\right)-l\left(\mathbf{Z}_{2}\right) \geq \frac{\mu}{2}\left\|\mathbf{Z}_{1}-\mathbf{Z}_{2}\right\|_{F}^{2} \tag{3}
\end{equation*}
$$

Let $\mathbf{B}_{t+1} \mathbf{B}_{t+1}^{\top}=\mathbf{Z}_{t+1}$ and $\hat{\mathbf{B}}_{t+1} \hat{\mathbf{B}}_{t+1}^{\top}=\mathbf{Z}_{t+1}^{*}$ where \mathbf{Z}_{t+1}^{*} is the optimal solution to the optimization problem

$$
\begin{equation*}
\min _{\mathbf{Z} \in \mathbb{R}^{N \times N}} \frac{1}{2}\left\|\mathbf{Z}-\mathbf{Z}_{t}\right\|_{F}^{2}+\eta_{t}\left\langle\mathbf{Z}-\mathbf{Z}_{t}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle+\eta_{t} \lambda\|\mathbf{Z}\|_{*} \tag{4}
\end{equation*}
$$

The following lemma is a key step in this proof.
Lemma 1. Before FEA converges, the following inequality holds, i.e.,

$$
\begin{align*}
& \frac{1}{2}\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t}\right\|_{F}^{2}+\eta_{t}\left\langle\mathbf{Z}_{t+1}-\mathbf{Z}_{t}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle+\eta_{t} \lambda\left\|\mathbf{Z}_{t+1}\right\|_{*} \\
\leq & \frac{1}{2}\left\|\mathbf{Z}^{*}-\mathbf{Z}_{t}\right\|_{F}^{2}+\eta_{t}\left\langle\mathbf{Z}^{*}-\mathbf{Z}_{t}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle+\eta_{t} \lambda\left\|\mathbf{Z}^{*}\right\|_{*} \tag{5}
\end{align*}
$$

where $\mathbf{Z}^{*}=\mathbf{B}^{*} \mathbf{B}^{* \top}$ is the optimal solution to

$$
\min _{\mathbf{Z} \in \mathbb{R}^{N} \times N} F(\mathbf{Z})+\lambda\|\mathbf{Z}\|_{*} .
$$

Proof. The objective function in (4) can be rewritten as

$$
\begin{aligned}
& \frac{1}{2}\left\|\mathbf{Z}-\mathbf{Z}_{t}\right\|_{F}^{2}+\eta_{t}\left\langle\mathbf{Z}-\mathbf{Z}_{t}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle+\eta_{t} \lambda\|\mathbf{Z}\|_{*} \\
= & \frac{1}{2}\left\|\mathbf{Z}-\left[\left(1-\eta_{t}\right) \mathbf{Z}_{t}+\eta_{t} \boldsymbol{\xi}_{t}\right]\right\|_{F}^{2}+\eta_{t} \lambda\|\mathbf{Z}\|_{*}-\frac{\eta_{t}^{2}}{2}\left\|\nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\|_{F}^{2} .
\end{aligned}
$$

Since $\frac{\eta_{t}^{2}}{2}\left\|\nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\|_{F}^{2}$ is a constant, we can only consider

$$
l(\mathbf{Z})=\frac{1}{2}\left\|\mathbf{Z}-\left[\left(1-\eta_{t}\right) \mathbf{Z}_{t}+\eta_{t} \boldsymbol{\xi}_{t}\right]\right\|_{F}^{2}+\eta \lambda\|\mathbf{Z}\|_{*}
$$

in the following part of the proof.

Now we first assume that $l\left(\mathbf{Z}^{*}\right) \leq l\left(\mathbf{Z}_{t+1}\right)$, then we have

$$
\begin{equation*}
l\left(\mathbf{Z}_{t+1}\right)-l\left(\mathbf{Z}_{t+1}^{*}\right) \geq l\left(\mathbf{Z}^{*}\right)-l\left(\mathbf{Z}_{t+1}^{*}\right) \geq \frac{\mu}{2}\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{Z}^{*}\right\|_{F}^{2} \tag{6}
\end{equation*}
$$

Let \mathbf{R}_{t} denote $\left(1-\eta_{t}\right) \mathbf{Z}_{t}+\eta_{t} \boldsymbol{\xi}_{t}$, then $l\left(\mathbf{Z}_{t+1}\right)-l\left(\mathbf{Z}_{t+1}^{*}\right)$ can be expanded as

$$
\begin{align*}
& l\left(\mathbf{Z}_{t+1}\right)-l\left(\mathbf{Z}_{t+1}^{*}\right) \\
= & \frac{1}{2}\left(\left\|\mathbf{Z}_{t+1}-\mathbf{R}_{t}\right\|_{F}-\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{R}_{t}\right\|_{F}\right) \\
& \left(\left\|\mathbf{Z}_{t+1}-\mathbf{R}_{t}\right\|_{F}+\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{R}_{t}\right\|_{F}\right) \\
& +\eta_{t} \lambda\left(\left\|\mathbf{Z}_{t+1}\right\|_{*}-\left\|\mathbf{Z}_{t+1}^{*}\right\|_{*}\right) \\
\leq & \frac{1}{2}\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t+1}^{*}\right\|_{F}\left(\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t+1}^{*}\right\|_{F}+2\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{R}_{t}\right\|_{F}\right) \\
& +\eta_{t} \lambda\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t+1}^{*}\right\|_{*} \tag{7}
\end{align*}
$$

It is well known that given a matrix \mathbf{M} the following inequality holds for its nuclear norm and its Frobenius norm, i.e., $\|\mathbf{M}\|_{*}^{2} \leq \operatorname{rank}(\mathbf{M})\|\mathbf{M}\|_{F}^{2}$. By this inequality, we have

$$
\begin{equation*}
\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t+1}^{*}\right\|_{*} \leq \sqrt{r}\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t+1}^{*}\right\|_{F} \leq \sqrt{r} N \epsilon \tag{8}
\end{equation*}
$$

where r is the rank of $\left(\mathbf{Z}_{t+1}-\mathbf{Z}_{t+1}^{*}\right)$. Substitute (8) into (7), we have
$l\left(\mathbf{Z}_{t+1}\right)-l\left(\mathbf{Z}_{t+1}^{*}\right) \leq \frac{1}{2} N^{2} \epsilon^{2}+n \epsilon\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{R}_{t}\right\|_{F}+\eta_{t} \lambda \sqrt{r} n \epsilon$.
Since $\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{R}_{t}\right\|_{F}$ is a constant, this upper bound of $l\left(\mathbf{Z}_{t+1}\right)-l\left(\mathbf{Z}_{t+1}^{*}\right)$ can become arbitrarily small if ϵ is arbitrarily small. Hence, according to (6), $\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{Z}^{*}\right\|_{F}^{2}$ can also be arbitrarily small. However, this contradicts that $\left\|\mathbf{Z}_{t+1}^{*}-\mathbf{Z}^{*}\right\|_{F}^{2}$ cannot become arbitrarily small before the convergence of FEA. Therefore, the assumption $l\left(\mathbf{Z}^{*}\right) \leq l\left(\mathbf{Z}_{t+1}\right)$ does not hold. In other words, $l\left(\mathbf{Z}^{*}\right) \geq l\left(\mathbf{Z}_{t+1}\right)$ is satisfied before the convergence of FEA.

The rest part then follows the proof of Theorem 1 in [1]. Based on Lemma 1 and the property of strongly convex function in (3), we have

$$
\begin{align*}
& \frac{1}{2}\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t}\right\|_{F}^{2}+\eta_{t}\left\langle\mathbf{Z}_{t+1}-\mathbf{Z}_{t}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle+\eta_{t} \lambda\left\|\mathbf{Z}_{t+1}\right\|_{*} \\
\leq & \frac{1}{2}\left\|\mathbf{Z}^{*}-\mathbf{Z}_{t}\right\|_{F}^{2}+\eta_{t}\left\langle\mathbf{Z}^{*}-\mathbf{Z}_{t}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle+\eta_{t} \lambda\left\|\mathbf{Z}^{*}\right\|_{*} \\
& -\frac{1}{2}\left\|\mathbf{Z}^{*}-\mathbf{Z}_{t+1}\right\|_{F}^{2} . \tag{9}
\end{align*}
$$

Similarly, according to (3) we have

$$
\frac{1}{2}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2} \leq F\left(\mathbf{Z}_{t}\right)+\lambda\left\|\mathbf{Z}_{t}\right\|_{*}-F\left(\mathbf{Z}^{*}\right)-\lambda\left\|\mathbf{Z}^{*}\right\|_{*}
$$

Since $F(\mathbf{Z})$ is 1-strongly convex, then

$$
\begin{aligned}
& \frac{1}{2}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2} \\
\leq & \left\langle\mathbf{Z}_{t}-\mathbf{Z}^{*}, \nabla F\left(\mathbf{Z}_{t}\right)\right\rangle-\frac{1}{2}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2}+\lambda\left(\left\|\mathbf{Z}_{t}\right\|_{*}-\left\|\mathbf{Z}^{*}\right\|_{*}\right) \\
= & \left\langle\mathbf{Z}_{t}-\mathbf{Z}^{*}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle-\lambda\left\|\mathbf{Z}^{*}\right\|_{*}-\frac{1}{2 \eta_{t}}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2} \\
& +\lambda\left\|\mathbf{Z}_{t}\right\|_{*}-\frac{1}{2}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2}+\frac{1}{2 \eta_{t}}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2} \\
& +\left\langle\nabla F\left(\mathbf{Z}_{t}\right)-\nabla f_{t}\left(\mathbf{Z}_{t}\right), \mathbf{Z}_{t}-\mathbf{Z}^{*}\right\rangle .
\end{aligned}
$$

Based on (9), we eventually obtain that

$$
\begin{align*}
& \frac{1}{2}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2} \\
\leq & \left\langle\mathbf{Z}_{t}-\mathbf{Z}_{t+1}, \nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\rangle-\lambda\left\|\mathbf{Z}_{t+1}\right\|_{*}-\frac{1}{2 \eta_{t}}\left\|\mathbf{Z}_{t+1}-\mathbf{Z}_{t}\right\|_{F}^{2} \\
& -\frac{1}{2 \eta_{t}}\left\|\mathbf{Z}^{*}-\mathbf{Z}_{t+1}\right\|_{F}^{2}+\lambda\left\|\mathbf{Z}_{t}\right\|_{*}+\frac{1-\eta_{t}}{2 \eta_{t}}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2} \\
& +\left\langle\nabla F\left(\mathbf{Z}_{t}\right)-\nabla f_{t}\left(\mathbf{Z}_{t}\right), \mathbf{Z}_{t}-\mathbf{Z}^{*}\right\rangle \\
\leq & \frac{\eta_{t}}{2}\left\|\nabla f_{t}\left(\mathbf{Z}_{t}\right)\right\|_{F}^{2}-\frac{1}{2 \eta_{t}}\left\|\mathbf{Z}_{t+1}-\mathbf{Z}^{*}\right\|_{F}^{2}+\lambda\left(\left\|\mathbf{Z}_{t}\right\|_{*}-\left\|\mathbf{Z}_{t+1}\right\|_{*}\right) \\
& +\frac{1-\eta_{t}}{2 \eta_{t}}\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2}+\left\langle\nabla F\left(\mathbf{Z}_{t}\right)-\nabla f_{t}\left(\mathbf{Z}_{t}\right), \mathbf{Z}_{t}-\mathbf{Z}^{*}\right\rangle \tag{10}
\end{align*}
$$

By substituting $\delta_{t}=\left\langle\boldsymbol{\xi}_{t}-\mathbf{K}, \mathbf{Z}_{t}-\mathbf{Z}^{*}\right\rangle$ and $C^{2}=$ $\max _{t \in[T]}\left\|\mathbf{Z}_{t}-\boldsymbol{\xi}_{t}\right\|_{F}^{2}$ into (10),

$$
\begin{align*}
\left\|\mathbf{Z}_{t+1}-\mathbf{Z}^{*}\right\|_{F}^{2} \leq & \eta_{t}^{2} C^{2}+2 \eta_{t} \delta_{t}+2 \lambda \eta_{t}\left(\left\|\mathbf{Z}_{t}\right\|_{*}-\left\|\mathbf{Z}_{t+1}\right\|_{*}\right) \\
& +\left(1-2 \eta_{t}\right)\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2} \tag{11}
\end{align*}
$$

The inequality in (11) is the same as the result of Lemma 1 in [1]. Thus, the following lemmas ${ }^{1}$ from [1] can be directly utilized to derive a probability bound for $\left\|\mathbf{Z}_{t+1}-\mathbf{Z}^{*}\right\|_{F}^{2}$.

Lemma 2 (Lemma 2 in [1]). Define $\gamma=\max _{t \in[T]}\left\|\mathbf{Z}_{t}\right\|_{*}$. By setting $\eta_{t}=\frac{2}{t}$, an upper bound of $\left\|\mathbf{Z}_{t+1}-\mathbf{Z}^{*}\right\|_{F}^{2}$ can be written as

$$
\begin{aligned}
& \left\|\mathbf{Z}_{T+1}-\mathbf{Z}^{*}\right\|_{F}^{2} \\
\leq & \frac{2}{T(T-1)}\left[2 \sum_{t=2}^{T}(t-1) \delta_{t}-\sum_{t=2}^{T}(t-1)\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2}\right] \\
& +\frac{4\left(C^{2}+\lambda \gamma\right)}{T}
\end{aligned}
$$

The upper bound of $\sum_{t=2}^{T}(t-1) \delta_{t}$ in Lemma 2 is then provided in Lemma 3.

Lemma 3 (Lemma 3 in [1]). Assume $\left\|\boldsymbol{\xi}_{t}-\mathbf{K}\right\|_{F} \leq G$, and $\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F} \leq H, \forall t>2$. With a probability at least $1-\delta$, $\sum_{t=2}^{T}(t-1) \delta_{t}$ is upper bounded by

$$
\begin{aligned}
\sum_{t=2}^{T}(t-1) \delta_{t} \leq & \frac{1}{2} \sum_{t=2}^{T}(t-1)\left\|\mathbf{Z}_{t}-\mathbf{Z}^{*}\right\|_{F}^{2}+2 G^{2} \tau(T-1) \\
& +\frac{2}{3} G H(T-1) \tau+G H(T-1)
\end{aligned}
$$

where $\tau=\log \frac{\left\lceil 2 \log _{2} T\right\rceil}{\delta}$.
Based on Lemma 2 and Lemma 3, the following upper bound of $\left\|\mathbf{Z}_{T+1}-\mathbf{Z}^{*}\right\|_{F}^{2}$ holds with a probability at least $1-\delta$,

$$
\begin{equation*}
\left\|\mathbf{Z}_{T+1}-\mathbf{Z}^{*}\right\|_{F}^{2} \leq \frac{4}{T}\left(C^{2}+\lambda \gamma+2 G^{2} \tau+\frac{2}{3} G H \tau+G H\right) \tag{12}
\end{equation*}
$$

In Lemma 4, the upper bounds for C, γ, G, and H are provided.

[^0]Lemma 4 (Lemma 4 in [1]). Assume $\|\xi\|_{F} \leq L$. By setting $\eta_{t}=\frac{2}{t}$, it can be obtained that

$$
C^{2} \leq 10 L^{2}, \gamma \leq 2 L \max _{t \in[T]} \sqrt{r_{t}}, G=2 L, \text { and } H=3 L,
$$

where r_{t} is the rank of \mathbf{Z}_{t}.
By substituting the upper bounds in Lemma 4 into (12) and replacing \mathbf{Z}_{T+1} and \mathbf{Z}^{*} with $\mathbf{B}_{T+1} \mathbf{B}_{T+1}^{\top}$ and $\mathbf{B}^{*} \mathbf{B}^{* \top}$, respectively, we eventually obtain

$$
\begin{aligned}
& \frac{\left\|\mathbf{B}_{T+1} \mathbf{B}_{T+1}^{\top}-\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{F}^{2}}{N^{2}} \\
\leq & \frac{8}{T}\left[\lambda \frac{L}{n^{2}} \max _{t \in[T]} \sqrt{r_{t}}+\frac{L^{2}}{n^{2}}\left(8+6 \log \frac{\left\lceil 2 \log _{2} T\right\rceil}{\delta}\right)\right]=O\left(\frac{1}{T}\right) .
\end{aligned}
$$

Appendix C

Proof of Theorem 3

In the t-th iteration of FEA, the following procedure is executed for Q_{t} iterations. The central server broadcasts a vector \mathbf{c}_{q} to all M user devices. User device m computes a local vector $\mathbf{d}_{m}=\mathbf{W}_{t}[m]^{\top} \mathbf{W}_{t}[m] \mathbf{c}_{q}$ and then uploads \mathbf{d}_{m} to the central server. Since $\mathbf{W}_{t}[m]=\left[\sqrt{\frac{T_{t}}{D}} \mathbf{A}_{t}[m], \sqrt{1-\eta_{t}} \mathbf{B}_{t-1}[m]\right] \in$ $\mathbb{R}^{N_{m} \times\left(r_{t-1}+D\right)}, \mathbf{W}_{t}[m]^{\top} \mathbf{W}_{t}[m]$ is a matrix with dimensions of $\left(r_{t-1}+D\right) \times\left(r_{t-1}+D\right)$. Hence, the dimensions of both \mathbf{c}_{q} and \mathbf{d}_{m} also equal $\left(r_{t-1}+D\right)$. As a result, the communication cost equals $2 Q_{t} M\left(r_{t-1}+D\right)$ in the t-th iteration of FEA, which shows that the communication cost is linear to $M\left(r_{t-1}+D\right)$.

For the centralized method, the user devices first uploads $\left\{\mathbf{W}_{t}[m], m \in \mathcal{M}\right\}$ to the central server, the central server then sends the updated submatrix $\mathbf{B}_{t}[m]$ to user device m for all $m \in \mathcal{M}$. Thus, its communication cost equals $N\left(r_{t-1}+\right.$ $r_{t}+D$) in the t-th iteration of FEA. Thus, CELA reduces the communication cost of FEA with a rate

$$
\eta_{t}=1-\frac{2 Q_{t} M\left(r_{t-1}+D\right)}{N\left(r_{t-1}+r_{t}+D\right)} \geq 1-\frac{2 M Q_{t}}{N} .
$$

Note that $Q_{t} \leq r_{t-1}+D$ according to the analysis in Section IV-A. Eventually, we have

$$
1-\frac{2 M\left(r_{t-1}+D\right)}{N} \leq \eta_{t}
$$

APPENDIX D

Proof of Theorem 4
Define $\mathbf{K}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$, and $\mathbf{P}=\mathbf{U} \boldsymbol{\Lambda}^{\frac{1}{2}}$. The low-rank approximation of \mathbf{K} with rank s is denoted as $\mathbf{K}_{s}=\mathbf{U} \boldsymbol{\Lambda}_{s} \mathbf{U}^{\top}$, and $\mathbf{P}_{s}=\mathbf{U} \boldsymbol{\Lambda}_{s}^{\frac{1}{2}}$ where the diagonal of $\boldsymbol{\Lambda}_{s}$ contains the s largest eigenvalues of \mathbf{K} while its rest diagonal entries are all zero. The output of FEA at iteration t is an estimation of \mathbf{K}_{s}, denoted as $\widetilde{\mathbf{K}}_{t}$, and $\widetilde{\mathbf{K}}_{t}=\widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}$.

The following two lemmas will be used in the proof of Theorem 3.
Lemma 5. Given $\widetilde{\mathbf{K}}_{t}$, the following inequality holds with a probability at least $1-\delta$ for any rank k projection matrix $\Pi \in \mathbb{R}^{N \times N}$,

$$
\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right)\right) \leq O\left(\sqrt{\frac{s}{t \delta}} N\right)
$$

Proof. Since Π is a rank- k projection matrix, it is obvious that $\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right)\right) \leq\left\|\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right\|_{*}$ For a rank-s matrix \mathbf{A}, $\|\mathbf{A}\|_{*}^{2} \leq s\|\mathbf{A}\|_{F}^{2}$ holds for its Nuclear norm and its Frobenius norm Hence, $\left\|\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right\|_{*} \leq \sqrt{s}| | \mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t} \|_{F}$. By Lemma 4, \mathbf{Z}_{t} converges to \mathbf{Z}^{*} at an $O\left(N^{2} / t \delta\right)$ rate. Note \mathbf{Z}^{*} has the same eigenvectors as \mathbf{K}_{s}. Thus, \mathbf{K}_{t} constructed based on \mathbf{Z}_{t} also converges to \mathbf{K}_{s} at an $O\left(N^{2} / t \delta\right)$ rate with a probability at least $1-\delta$, i.e., $\left\|\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right\|_{F}^{2}$ has an upper bound as

$$
\left\|\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right\|_{F}^{2} \leq O\left(N^{2} / t \delta\right) .
$$

Hence, the following inequality holds with a probability of at least $1-\delta$

$$
\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right)\right) \leq \sqrt{s}\left\|\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right\|_{F} \leq O\left(\sqrt{\frac{s}{t \delta}} N\right)
$$

Lemma 6. Fix an error parameter $\varepsilon \in(0,1)$. For any rank k projection matrix $\Pi \in \mathbb{R}^{N \times N}$,

$$
\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\widetilde{\mathbf{K}}_{t}\right) \boldsymbol{\Pi}\right) \leq\left(\varepsilon+\frac{k}{s}\right)\|\mathbf{P}-\boldsymbol{\Pi} \mathbf{P}\|_{F}^{2}
$$

Proof. $\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\mathbf{K}_{s}\right) \boldsymbol{\Pi}\right)$ can be expanded as

$$
\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\mathbf{K}_{s}\right) \boldsymbol{\Pi}\right)=\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{P} \mathbf{P}^{\top}-\mathbf{P}_{s} \mathbf{P}_{s}^{\top}\right) \boldsymbol{\Pi}\right) .
$$

Note that $\operatorname{Tr}\left(\mathbf{P P}^{\top}-\mathbf{P}_{s} \mathbf{P}_{s}^{\top}\right)=\sum_{i=s+1}^{N} \sigma_{i}^{2}(\mathbf{P})$, where $\sigma_{i}(\mathbf{P})$ is the i-th singular value of \mathbf{P}. After multiplied with a rank- k projection matrix $\boldsymbol{\Pi}$, the maximal value of $\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\mathbf{K}_{s}\right)\right)$ is achieved when the largest k singular values in $\left\{\sigma_{i}(\mathbf{P}), i=s+1, \ldots, N\right\}$ are kept. Hence, we have

$$
\begin{equation*}
\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\mathbf{K}_{s}\right) \boldsymbol{\Pi}\right) \leq \sum_{i=s+1}^{s+k} \sigma_{i}^{2}(\mathbf{P}) \tag{13}
\end{equation*}
$$

$\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\tilde{\mathbf{K}}_{t}\right) \boldsymbol{\Pi}\right)$ is then expanded as

$$
\begin{aligned}
& \operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\widetilde{\mathbf{K}}_{t}\right) \boldsymbol{\Pi}\right) \\
= & \operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\mathbf{K}_{s}\right) \boldsymbol{\Pi}\right)+\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right) \boldsymbol{\Pi}\right) \\
\leq & \sum_{i=s+1}^{s+k} \sigma_{i}^{2}(\mathbf{P})+\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right) \boldsymbol{\Pi}\right) \\
= & \sum_{i=s+1}^{s+k} \sigma_{i}^{2}(\mathbf{P})+\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}_{s}-\widetilde{\mathbf{K}}_{t}\right)\right) \\
\leq & \sum_{i=s+1}^{s+k} \sigma_{i}^{2}(\mathbf{P})+O\left(\sqrt{\frac{s}{t \delta}} N\right) \\
\leq & \frac{k}{s} \sum_{i=k+1}^{s+k} \sigma_{i}^{2}(\mathbf{P})+O\left(\sqrt{\frac{s}{t \delta}} N\right),
\end{aligned}
$$

where the first inequality comes from Eq. (13), the second inequality comes from Lemma 5 , and $k \leq s$.

For $\sum_{i=k+1}^{s+k} \sigma_{i}^{2}(\mathbf{P})$, we have

$$
\sum_{i=k+1}^{s+k} \sigma_{i}^{2}(\mathbf{P}) \leq \sum_{i=k+1}^{N} \sigma_{i}^{2}(\mathbf{P})=\left\|\mathbf{P}-\mathbf{P}_{k}\right\|_{F}^{2}
$$

Since $\|\mathbf{P}\|_{F}^{2}=\operatorname{Tr} K=O(N)$, we have $\left\|\mathbf{P}-\mathbf{P}_{k}\right\|_{F}^{2}=O(N)$ Thus, $O\left(\sqrt{\frac{s}{t \delta}} N\right)$ can be rewritten as $\varepsilon\left\|\mathbf{P}-\mathbf{P}_{k}\right\|_{F}^{2}$ where ε is still at the order of $O\left(\sqrt{\frac{s}{t \delta}}\right)$. As a result, we have

$$
\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\widetilde{\mathbf{K}}_{t}\right) \boldsymbol{\Pi}\right) \leq\left(\varepsilon+\frac{k}{s}\right)\left\|\mathbf{P}-\mathbf{P}_{k}\right\|_{F}^{2}
$$

Since $\left\|\mathbf{P}-\mathbf{P}_{k}\right\|_{F}^{2}$ is the minimal value of $\|\mathbf{P}-\boldsymbol{\Pi} \mathbf{P}\|_{F}^{2}$ for any Π, we then have

$$
\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{K}-\tilde{\mathbf{K}}_{t}\right) \boldsymbol{\Pi}\right) \leq\left(\varepsilon+\frac{k}{s}\right)\|\mathbf{P}-\boldsymbol{\Pi} \mathbf{P}\|_{F}^{2}
$$

After completing the proofs of Lemma 5 and Lemma 6, we then finish the rest proof of Theorem 3 as follows. It can be obtained that

$$
\begin{aligned}
& \left\|\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \mathbf{P}\right\|_{F}^{2}-\left\|\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \widetilde{\mathbf{P}}_{t}\right\|_{F}^{2} \\
= & \operatorname{Tr}\left(\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \mathbf{P} \mathbf{P}^{\top}\right)-\operatorname{Tr}\left(\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}\right) \\
= & \operatorname{Tr}\left(\mathbf{P} \mathbf{P}^{\top}-\widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}\right)-\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{P} \mathbf{P}^{\top}-\widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}\right) \mathbf{\Pi}\right) .
\end{aligned}
$$

Let $\alpha=\operatorname{Tr}\left(\mathbf{P} \mathbf{P}^{\top}-\widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}\right)$, and then the above equation can be rewritten as

$$
\left\|\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \mathbf{P}\right\|_{F}^{2}+\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{P} \mathbf{P}^{\top}-\widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}\right) \boldsymbol{\Pi}\right)=\alpha+\left\|\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \widetilde{\mathbf{P}}_{t}\right\|_{F}^{2}
$$

After sufficient iterations, both α and $\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{P} \mathbf{P}^{\top}-\widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}\right) \boldsymbol{\Pi}\right)$ are non-negative with a high probability. Thus, by Lemma 6 it holds that

$$
\begin{align*}
& \left\|\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \mathbf{P}\right\|_{F}^{2} \\
\leq & \alpha+\left\|\left(\mathbf{I}_{N}-\mathbf{\Pi}\right) \widetilde{\mathbf{P}}_{t}\right\|_{F}^{2} \\
= & \left\|\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \mathbf{P}\right\|_{F}^{2}+\operatorname{Tr}\left(\boldsymbol{\Pi}\left(\mathbf{P} \mathbf{P}^{\top}-\widetilde{\mathbf{P}}_{t} \widetilde{\mathbf{P}}_{t}^{\top}\right) \boldsymbol{\Pi}\right) \tag{14}\\
\leq & \left(1+\varepsilon+\frac{k}{s}\right)\left\|\left(\mathbf{I}_{N}-\boldsymbol{\Pi}\right) \mathbf{P}\right\|_{F}^{2}
\end{align*}
$$

Based on (14), Theorem 3 can be proved as follows. Let $\boldsymbol{\Pi}=\widetilde{\mathbf{Y}}_{t} \widetilde{\mathbf{L}}_{t} \widetilde{\mathbf{Y}}_{t}^{\top}$, where $\widetilde{\mathbf{Y}}_{t}$ is the indicator matrix obtained by applying a γ-approximate algorithm to $\widetilde{\mathbf{P}}_{t}$, then

$$
\begin{aligned}
\left\|\left(\mathbf{I}_{N}-\widetilde{\mathbf{Y}}_{t} \widetilde{\mathbf{L}}_{t} \widetilde{\mathbf{Y}}_{t}^{\top}\right) \mathbf{P}\right\|_{F}^{2} & \leq \alpha+\left\|\left(\mathbf{I}_{N}-\widetilde{\mathbf{Y}}_{t} \widetilde{\mathbf{L}}_{t} \widetilde{\mathbf{Y}}_{t}^{\top}\right) \widetilde{\mathbf{P}}_{t}\right\|_{F}^{2} \\
& \leq \alpha+\gamma\left\|\left(\mathbf{I}_{N}-\widetilde{\mathbf{Y}}_{t}^{*} \widetilde{\mathbf{L}}_{t}^{*} \widetilde{\mathbf{Y}}_{t}^{* \top}\right) \widetilde{\mathbf{P}}_{t}\right\|_{F}^{2}
\end{aligned}
$$

where $\tilde{\mathbf{Y}}_{t}^{*}$ is the optimal indicator matrix for the linear k means problem on $\widetilde{\mathbf{P}}_{t}$. Since $\gamma>1$, it follows that

$$
\begin{aligned}
& \alpha+\gamma\left\|\left(\mathbf{I}_{N}-\widetilde{\mathbf{Y}}_{t}^{*} \widetilde{\mathbf{L}}_{t}^{*} \widetilde{\mathbf{Y}}_{t}^{* \top}\right) \widetilde{\mathbf{P}}_{t}\right\|_{F}^{2} \\
\leq & \alpha+\gamma\left\|\left(\mathbf{I}_{N}-\mathbf{Y}^{*} \mathbf{L}^{*} \mathbf{Y}^{* \top}\right) \widetilde{\mathbf{P}}_{t}\right\|_{F}^{2} \\
\leq & \gamma\left(1+\varepsilon+\frac{k}{s}\right)\left\|\left(\mathbf{I}_{N}-\mathbf{Y}^{*} \mathbf{L}^{*} \mathbf{Y}^{* \top}\right) \mathbf{P}\right\|_{F}^{2}
\end{aligned}
$$

Thus,
$\left\|\left(\mathbf{I}_{N}-\tilde{\mathbf{Y}}_{t} \widetilde{\mathbf{L}}_{t} \widetilde{\mathbf{Y}}_{t}^{\top}\right) \mathbf{P}\right\|_{F}^{2} \leq \gamma\left(1+\varepsilon+\frac{k}{s}\right)\left\|\left(\mathbf{I}_{N}-\mathbf{Y}^{*} \mathbf{L}^{*} \mathbf{Y}^{* \top}\right) \mathbf{P}\right\|_{F}^{2}$,
which is equivalent to $f_{K}\left(\widetilde{\mathbf{Y}}_{t}\right) \leq \gamma\left(1+\varepsilon+\frac{k}{s}\right) \min _{\mathbf{Y}} f_{K}(\mathbf{Y})$.

Appendix E
 Discussion on Privacy Preservation

If the central server collects sufficient random feature vectors of a data samples, then it is possible for the central server to recover the data samples from these random features. The reason is as follows. A random feature vector of a data sample \mathbf{x}_{i} has the form $\cos \left(\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+b\right)$ where the $\boldsymbol{\omega}$ and b are known by the central server. Since the value of $\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+b$ cannot be arbitrarily large, the central server can determine the value of $\boldsymbol{\omega}^{\top} \mathbf{x}_{i}+b$ for each random feature vector if sufficient such random features are collected. The data sample \mathbf{x}_{i} can be recovered by solving a system of linear equations.

In FedKKM, the above recovering operation is infeasible, which is proved by the following lemma.

Lemma 7. Based on the collected vectors $\left\{\mathbf{g}_{q}=\right.$ $\left.\mathbf{W}_{t}^{\top} \mathbf{W}_{t} \mathbf{c}_{q}, q=1, \ldots, Q\right\}$, the central server can at most recover the matrix $\mathbf{W}_{t}^{\top} \mathbf{W}_{t}$ via matrix operations. Moreover, recovering the matrix \mathbf{A}_{t} from the matrix $\mathbf{W}_{t}^{\top} \mathbf{W}_{t}$ is an illposed problem with infinite solutions.

Proof. In FedKKM, the central server collects the vectors $\left\{\mathbf{g}_{q}=\mathbf{W}_{t}^{\top} \mathbf{W}_{t} \mathbf{c}_{q}, q=1, \ldots, Q\right\}$. If $\mathbf{W}_{t}^{\top} \mathbf{W}_{t}$ is a full-rank matrix, and Q equals the rank of $\mathbf{W}_{t}^{\top} \mathbf{W}_{t}$, the central server can compute $\mathbf{W}_{t}^{\top} \mathbf{W}_{t}$ based on the matrices $\mathbf{G}=\left[\mathbf{g}_{1}, \ldots, \mathbf{g}_{Q}\right]$ $\|_{F}^{\text {and }} \mathbf{C}=\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{Q}\right]$, i.e.,

$$
\mathbf{W}_{t}^{\top} \mathbf{W}_{t}=\mathbf{G} \mathbf{C}^{-1}
$$

where \mathbf{C}^{-1} is the inverse matrix of \mathbf{C}.
Since

$$
\mathbf{W}_{t}^{\top} \mathbf{W}_{t}=\left[\begin{array}{cc}
\frac{\eta_{t}}{D} \mathbf{A}_{t}^{\top} \mathbf{A}_{t} & \sqrt{\frac{\eta_{t}\left(1-\eta_{t}\right)}{D}} \mathbf{A}_{t}^{\top} \mathbf{B}_{t-1} \\
\sqrt{\frac{\eta_{t}\left(1-\eta_{t}\right)}{D}} \mathbf{B}_{t-1}^{\top} \mathbf{A}_{t} & \left(1-\eta_{t}\right) \mathbf{B}_{t}^{\top} \mathbf{B}_{t-1}
\end{array}\right]
$$

$\mathbf{A}_{t}^{\top} \mathbf{A}_{t}$ can be recovered from $\mathbf{W}_{t}^{\top} \mathbf{W}_{t}$.
For a matrix $\mathbf{A}_{t} \in \mathbb{R}^{N \times D}$, a matrix $\mathbf{A}^{\prime} \in \mathbb{R}^{N \times D}$ can be constructed via

$$
\mathbf{A}^{\prime}=\mathbf{U}_{o} \mathbf{A}_{t}
$$

where $\mathbf{U}_{o} \in \mathbb{R}^{N \times N}$ is an arbitrary orthogonal matrix with $\mathbf{U}_{o}^{\top} \mathbf{U}_{o}=\mathbf{I}_{n}$. By this construction, it can be derived that

$$
\mathbf{A}^{\prime \top} \mathbf{A}^{\prime}=\mathbf{A}_{t}^{\top} \mathbf{U}_{o}^{\top} \mathbf{U}_{o} \mathbf{A}_{t}=\mathbf{A}_{t}^{\top} \mathbf{A}_{t}
$$

Since there exist infinite matrices \mathbf{U}_{o} satisfying $\mathbf{U}_{o}^{\top} \mathbf{U}_{o}=\mathbf{I}_{n}$, the problem $\mathbf{A}_{t}^{\top} \mathbf{A}_{t}=\mathbf{A}^{\prime \top} \mathbf{A}^{\prime}$ has infinite solutions. Hence, recovering the random feature matrix \mathbf{A}_{t} from $\mathbf{A}_{t}^{\top} \mathbf{A}_{t}$ is an ill-posed problem with infinite solutions.

By Lemma 7, the central server cannot recover \mathbf{A}_{t} from $\mathbf{A}_{t}^{\top} \mathbf{A}_{t}$. Without such random feature vectors, it is infeasible for the central server to recover users' data via matrix operations.

REFERENCES

[1] L. Zhang, T. Yang, J. Yi, R. Jin, and Z.-H. Zhou, "Stochastic optimization for kernel PCA," in Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 2316-2322.

[^0]: ${ }^{1}$ These lemmas can be found in the supplementary material of [1] that can be downloaded from https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf

