1

Supplementary Material for Memory and Communication Efficient Federated Kernel k-Means

Xiaochen Zhou and Xudong Wang, Fellow, IEEE

<

APPENDIX A Proof of Theorem 1

We first briefly demonstrate the principle of stochastic kernel PCA. It is a centralized learning algorithm that determines a low-rank estimate of the kernel matrix \mathbf{K} by solving a composite optimization problem

$$\min_{\mathbf{Z} \in \mathbb{R}^{N \times N}} \frac{1}{2} ||\mathbf{Z} - \mathbf{K}||_F^2 + \lambda ||\mathbf{Z}||_*$$

The optimal solution to this problem is

$$\mathbf{Z}^* = \sum_{\lambda_i > \lambda} (\lambda_i - \lambda) \mathbf{u}_i \mathbf{u}_i^\top = \sum_{i=1}^s (\lambda_i - \lambda) \mathbf{u}_i \mathbf{u}_i^\top,$$

where λ_i and \mathbf{u}_i are the *i*-th eigenvalue and eigenvector of \mathbf{K} , respectively. A stochastic optimization method is developed to solve this problem as follows. In the *t*-th iteration, an unbiased estimate $\boldsymbol{\xi}_t$ of \mathbf{K} is constructed based on a random feature method. The updated solution \mathbf{Z}_t is then computed based on the current solution \mathbf{Z}_{t-1} and $\boldsymbol{\xi}_t$ via stochastic proximal gradient descent

$$\begin{aligned} \mathbf{Z}_{t} &= \operatorname*{arg\,min}_{\mathbf{Z} \in \mathbb{R}^{N \times N}} \frac{1}{2} ||\mathbf{Z} - \mathbf{Z}_{t-1}||_{F}^{2} + \eta_{t} \langle \mathbf{Z} - \mathbf{Z}_{t-1}, \mathbf{Z}_{t-1} - \boldsymbol{\xi}_{t} \rangle \\ &+ \eta_{t} \lambda ||\mathbf{Z}||_{*}, \end{aligned}$$

where η_t is the learning rate in the *t*-th iteration. \mathbf{Z}_t has a closed-form expression, i.e.,

$$\mathbf{Z}_{t} = \sum_{\lambda_{i,t} > \eta_{t}\lambda} \left(\lambda_{i,t} - \eta_{t}\lambda \right) \tilde{\mathbf{u}}_{i,t} \tilde{\mathbf{u}}_{i,t}^{\top}, \tag{1}$$

where $\lambda_{i,t}$ and $\tilde{\mathbf{u}}_{i,t}$ are the *i*-th eigenvalue and eigenvector of the matrix $(1 - \eta_t)\mathbf{Z}_{t-1} + \eta_t \boldsymbol{\xi}_t$.

We then show that the update rule

$$\mathbf{B}_{t} = \left[\sqrt{\sigma_{1,t}^{2} - \eta_{t}\lambda}\mathbf{u}_{1,t}, ..., \sqrt{\sigma_{I,t}^{2} - \eta_{t}\lambda}\mathbf{u}_{I,t}\right], \qquad (2)$$

is actually equivalent to that in Eq. (1). For the estimate $\boldsymbol{\xi}_t$, it can be decomposed as $\boldsymbol{\xi}_t = \frac{1}{D} \mathbf{A}_t \mathbf{A}_t^{\top}$ according to the random feature method. Next, it is proved that $\mathbf{Z}_t = \mathbf{B}_t \mathbf{B}_t^{\top}$ via mathematical induction. Initially, $\mathbf{Z}_0 = \mathbf{0}$ and $\mathbf{B}_0 = \mathbf{0}$. Assume that $\mathbf{Z}_{t-1} = \mathbf{B}_{t-1} \mathbf{B}_{t-1}^{\top}$. $(1 - \eta_t) \mathbf{Z}_{t-1} + \eta_t \boldsymbol{\xi}_t$ can then be written as

$$(1 - \eta_t)\mathbf{Z}_{t-1} + \eta_t \boldsymbol{\xi}_t = (1 - \eta_t)\mathbf{B}_{t-1}\mathbf{B}_{t-1}^\top + \frac{\eta_t}{D}\mathbf{A}_t\mathbf{A}_t^\top$$
$$= \mathbf{W}_t \mathbf{W}_t^\top.$$

Hence, in Eq. (1), $\lambda_{i,t}$ and $\tilde{\mathbf{u}}_{i,t}$ are also the *i*-th eigenvalue and eigenvector of the matrix $\mathbf{W}_t \mathbf{W}_t^{\top}$. Moreover, $\lambda_{i,t} = \sigma_{i,t}^2$ and $\tilde{\mathbf{u}}_{i,t} = \mathbf{u}_{i,t}$ where $\sigma_{i,t}$ and $\mathbf{u}_{i,t}$ are the *i*-th singular value and singular vector of \mathbf{W}_t . respectively. According to Eq. (2), \mathbf{Z}_t can be rewritten as $\mathbf{Z}_t = \mathbf{B}_t \mathbf{B}_t^{\mathsf{T}}$, which completes the mathematical induction.

Similar to $\mathbf{B}_{t-1} = [\mathbf{B}_{t-1}^{\top}[1], ..., \mathbf{B}_{t-1}^{\top}[M]^{\top}]$, the updated estimate \mathbf{B}_t can also be rewritten in the form of M submatrices, i.e., $\mathbf{B}_t = [\mathbf{B}_t^{\top}[1], ..., \mathbf{B}_t^{\top}[M]^{\top}]$ where $\mathbf{B}_t[m]$ is the updated submatrix at user device m.

Since in stochastic kernel PCA \mathbf{Z}_t converges to $\mathbf{Z}^* = \sum_{i=1}^{s} (\lambda_i - \lambda) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}$, \mathbf{B}_t converges to

$$\mathbf{B}^* = \left[\sqrt{\lambda_1 - \lambda}\mathbf{u}_1, ..., \sqrt{\lambda_s - \lambda}\mathbf{u}_s
ight].$$

APPENDIX B Proof of Theorem 2

Before the proof, we first define $F(\mathbf{Z}) = \frac{1}{2}\mathbb{E}[||\mathbf{Z} - \boldsymbol{\xi}||_F^2]$ and $f_t(\mathbf{Z}) = \frac{1}{2}||\mathbf{Z} - \boldsymbol{\xi}_t||_F^2$. For a μ -strongly convex function $l(\mathbf{Z})$, if $l(\mathbf{Z}_1) \ge l(\mathbf{Z}_2)$, then

$$l(\mathbf{Z}_1) - l(\mathbf{Z}_2) \ge \frac{\mu}{2} ||\mathbf{Z}_1 - \mathbf{Z}_2||_F^2.$$
 (3)

Let $\mathbf{B}_{t+1}\mathbf{B}_{t+1}^{\top} = \mathbf{Z}_{t+1}$ and $\hat{\mathbf{B}}_{t+1}\hat{\mathbf{B}}_{t+1}^{\top} = \mathbf{Z}_{t+1}^{*}$ where \mathbf{Z}_{t+1}^{*} is the optimal solution to the optimization problem

$$\min_{\mathbf{Z}\in\mathbb{R}^{N\times N}}\frac{1}{2}||\mathbf{Z}-\mathbf{Z}_t||_F^2 + \eta_t \langle \mathbf{Z}-\mathbf{Z}_t, \nabla f_t(\mathbf{Z}_t) \rangle + \eta_t \lambda ||\mathbf{Z}||_*.$$
(4)

The following lemma is a key step in this proof.

Lemma 1. Before FEA converges, the following inequality holds, i.e.,

$$\frac{1}{2}||\mathbf{Z}_{t+1} - \mathbf{Z}_t||_F^2 + \eta_t \langle \mathbf{Z}_{t+1} - \mathbf{Z}_t, \nabla f_t(\mathbf{Z}_t) \rangle + \eta_t \lambda ||\mathbf{Z}_{t+1}||_* \\ \leq \frac{1}{2}||\mathbf{Z}^* - \mathbf{Z}_t||_F^2 + \eta_t \langle \mathbf{Z}^* - \mathbf{Z}_t, \nabla f_t(\mathbf{Z}_t) \rangle + \eta_t \lambda ||\mathbf{Z}^*||_*,$$
(5)

where $\mathbf{Z}^* = \mathbf{B}^* \mathbf{B}^{*\top}$ is the optimal solution to

$$\min_{\mathbf{Z}\in\mathbb{R}^{N\times N}}F(\mathbf{Z})+\lambda||\mathbf{Z}||_{*}.$$

Proof. The objective function in (4) can be rewritten as

$$\frac{1}{2}||\mathbf{Z} - \mathbf{Z}_t||_F^2 + \eta_t \langle \mathbf{Z} - \mathbf{Z}_t, \nabla f_t(\mathbf{Z}_t) \rangle + \eta_t \lambda ||\mathbf{Z}||_*$$
$$= \frac{1}{2}||\mathbf{Z} - [(1 - \eta_t)\mathbf{Z}_t + \eta_t \boldsymbol{\xi}_t]||_F^2 + \eta_t \lambda ||\mathbf{Z}||_* - \frac{\eta_t^2}{2}||\nabla f_t(\mathbf{Z}_t)||_F^2$$

Since $\frac{\eta_t}{2} ||\nabla f_t(\mathbf{Z}_t)||_F^2$ is a constant, we can only consider

$$l(\mathbf{Z}) = \frac{1}{2} ||\mathbf{Z} - [(1 - \eta_t)\mathbf{Z}_t + \eta_t \boldsymbol{\xi}_t]||_F^2 + \eta \lambda ||\mathbf{Z}||_*$$

in the following part of the proof.

Now we first assume that $l(\mathbf{Z}^*) \leq l(\mathbf{Z}_{t+1})$, then we have

$$l(\mathbf{Z}_{t+1}) - l(\mathbf{Z}_{t+1}^*) \ge l(\mathbf{Z}^*) - l(\mathbf{Z}_{t+1}^*) \ge \frac{\mu}{2} ||\mathbf{Z}_{t+1}^* - \mathbf{Z}^*||_F^2.$$
(6)

Let \mathbf{R}_t denote $(1 - \eta_t)\mathbf{Z}_t + \eta_t \boldsymbol{\xi}_t$, then $l(\mathbf{Z}_{t+1}) - l(\mathbf{Z}_{t+1}^*)$ can be expanded as

$$l(\mathbf{Z}_{t+1}) - l(\mathbf{Z}_{t+1}^{*}) = \frac{1}{2}(||\mathbf{Z}_{t+1} - \mathbf{R}_{t}||_{F} - ||\mathbf{Z}_{t+1}^{*} - \mathbf{R}_{t}||_{F}) (||\mathbf{Z}_{t+1} - \mathbf{R}_{t}||_{F} + ||\mathbf{Z}_{t+1}^{*} - \mathbf{R}_{t}||_{F}) + \eta_{t}\lambda(||\mathbf{Z}_{t+1}||_{*} - ||\mathbf{Z}_{t+1}^{*}||_{*}) \leq \frac{1}{2}||\mathbf{Z}_{t+1} - \mathbf{Z}_{t+1}^{*}||_{F}(||\mathbf{Z}_{t+1} - \mathbf{Z}_{t+1}^{*}||_{F} + 2||\mathbf{Z}_{t+1}^{*} - \mathbf{R}_{t}||_{F}) + \eta_{t}\lambda||\mathbf{Z}_{t+1} - \mathbf{Z}_{t+1}^{*}||_{*}$$
(7)

It is well known that given a matrix \mathbf{M} the following inequality holds for its nuclear norm and its Frobenius norm, i.e., $||\mathbf{M}||_*^2 \leq \operatorname{rank}(\mathbf{M})||\mathbf{M}||_F^2$. By this inequality, we have

$$||\mathbf{Z}_{t+1} - \mathbf{Z}_{t+1}^*||_* \le \sqrt{r} ||\mathbf{Z}_{t+1} - \mathbf{Z}_{t+1}^*||_F \le \sqrt{r} N \epsilon, \quad (8)$$

where r is the rank of $(\mathbf{Z}_{t+1} - \mathbf{Z}_{t+1}^*)$. Substitute (8) into (7), we have

$$l(\mathbf{Z}_{t+1}) - l(\mathbf{Z}_{t+1}^*) \le \frac{1}{2}N^2\epsilon^2 + n\epsilon||\mathbf{Z}_{t+1}^* - \mathbf{R}_t||_F + \eta_t\lambda\sqrt{r}n\epsilon.$$

Since $||\mathbf{Z}_{t+1}^* - \mathbf{R}_t||_F$ is a constant, this upper bound of $l(\mathbf{Z}_{t+1}) - l(\mathbf{Z}_{t+1}^*)$ can become arbitrarily small if ϵ is arbitrarily small. Hence, according to (6), $||\mathbf{Z}_{t+1}^* - \mathbf{Z}^*||_F^2$ can also be arbitrarily small. However, this contradicts that $||\mathbf{Z}_{t+1}^* - \mathbf{Z}^*||_F^2$ cannot become arbitrarily small before the convergence of FEA. Therefore, the assumption $l(\mathbf{Z}^*) \leq l(\mathbf{Z}_{t+1})$ does not hold. In other words, $l(\mathbf{Z}^*) \geq l(\mathbf{Z}_{t+1})$ is satisfied before the convergence of FEA.

The rest part then follows the proof of Theorem 1 in [1]. Based on Lemma 1 and the property of strongly convex function in (3), we have

$$\frac{1}{2} ||\mathbf{Z}_{t+1} - \mathbf{Z}_{t}||_{F}^{2} + \eta_{t} \langle \mathbf{Z}_{t+1} - \mathbf{Z}_{t}, \nabla f_{t}(\mathbf{Z}_{t}) \rangle + \eta_{t} \lambda ||\mathbf{Z}_{t+1}||_{*} \\
\leq \frac{1}{2} ||\mathbf{Z}^{*} - \mathbf{Z}_{t}||_{F}^{2} + \eta_{t} \langle \mathbf{Z}^{*} - \mathbf{Z}_{t}, \nabla f_{t}(\mathbf{Z}_{t}) \rangle + \eta_{t} \lambda ||\mathbf{Z}^{*}||_{*} \\
- \frac{1}{2} ||\mathbf{Z}^{*} - \mathbf{Z}_{t+1}||_{F}^{2}.$$
(9)

Similarly, according to (3) we have

$$\frac{1}{2}||\mathbf{Z}_t - \mathbf{Z}^*||_F^2 \le F(\mathbf{Z}_t) + \lambda||\mathbf{Z}_t||_* - F(\mathbf{Z}^*) - \lambda||\mathbf{Z}^*||_*.$$

Since $F(\mathbf{Z})$ is 1-strongly convex, then

$$\begin{aligned} &\frac{1}{2} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} \\ \leq \langle \mathbf{Z}_{t} - \mathbf{Z}^{*}, \nabla F(\mathbf{Z}_{t}) \rangle - \frac{1}{2} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} + \lambda(||\mathbf{Z}_{t}||_{*} - ||\mathbf{Z}^{*}||_{*}) \\ = \langle \mathbf{Z}_{t} - \mathbf{Z}^{*}, \nabla f_{t}(\mathbf{Z}_{t}) \rangle - \lambda ||\mathbf{Z}^{*}||_{*} - \frac{1}{2\eta_{t}} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} \\ &+ \lambda ||\mathbf{Z}_{t}||_{*} - \frac{1}{2} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} + \frac{1}{2\eta_{t}} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} \\ &+ \langle \nabla F(\mathbf{Z}_{t}) - \nabla f_{t}(\mathbf{Z}_{t}), \mathbf{Z}_{t} - \mathbf{Z}^{*} \rangle. \end{aligned}$$

Based on (9), we eventually obtain that

$$\frac{1}{2} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} \leq \langle \mathbf{Z}_{t} - \mathbf{Z}_{t+1}, \nabla f_{t}(\mathbf{Z}_{t}) \rangle - \lambda ||\mathbf{Z}_{t+1}||_{*} - \frac{1}{2\eta_{t}} ||\mathbf{Z}_{t+1} - \mathbf{Z}_{t}||_{F}^{2} \\
- \frac{1}{2\eta_{t}} ||\mathbf{Z}^{*} - \mathbf{Z}_{t+1}||_{F}^{2} + \lambda ||\mathbf{Z}_{t}||_{*} + \frac{1 - \eta_{t}}{2\eta_{t}} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} \\
+ \langle \nabla F(\mathbf{Z}_{t}) - \nabla f_{t}(\mathbf{Z}_{t}), \mathbf{Z}_{t} - \mathbf{Z}^{*} \rangle \\
\leq \frac{\eta_{t}}{2} ||\nabla f_{t}(\mathbf{Z}_{t})||_{F}^{2} - \frac{1}{2\eta_{t}} ||\mathbf{Z}_{t+1} - \mathbf{Z}^{*}||_{F}^{2} + \lambda (||\mathbf{Z}_{t}||_{*} - ||\mathbf{Z}_{t+1}||_{*}) \\
+ \frac{1 - \eta_{t}}{2\eta_{t}} ||\mathbf{Z}_{t} - \mathbf{Z}^{*}||_{F}^{2} + \langle \nabla F(\mathbf{Z}_{t}) - \nabla f_{t}(\mathbf{Z}_{t}), \mathbf{Z}_{t} - \mathbf{Z}^{*} \rangle \tag{10}$$

By substituting $\delta_t = \langle \boldsymbol{\xi}_t - \mathbf{K}, \mathbf{Z}_t - \mathbf{Z}^* \rangle$ and $C^2 = \max_{t \in [T]} ||\mathbf{Z}_t - \boldsymbol{\xi}_t||_F^2$ into (10),

$$||\mathbf{Z}_{t+1} - \mathbf{Z}^*||_F^2 \le \eta_t^2 C^2 + 2\eta_t \delta_t + 2\lambda \eta_t (||\mathbf{Z}_t||_* - ||\mathbf{Z}_{t+1}||_*) + (1 - 2\eta_t) ||\mathbf{Z}_t - \mathbf{Z}^*||_F^2.$$
(11)

The inequality in (11) is the same as the result of Lemma 1 in [1]. Thus, the following lemmas ¹ from [1] can be directly utilized to derive a probability bound for $||\mathbf{Z}_{t+1} - \mathbf{Z}^*||_F^2$.

Lemma 2 (Lemma 2 in [1]). Define $\gamma = \max_{t \in [T]} ||\mathbf{Z}_t||_*$. By setting $\eta_t = \frac{2}{t}$, an upper bound of $||\mathbf{Z}_{t+1} - \mathbf{Z}^*||_F^2$ can be written as

$$\begin{aligned} ||\mathbf{Z}_{T+1} - \mathbf{Z}^*||_F^2 \\ \leq & \frac{2}{T(T-1)} \left[2\sum_{t=2}^T (t-1)\delta_t - \sum_{t=2}^T (t-1)||\mathbf{Z}_t - \mathbf{Z}^*||_F^2 \right] \\ &+ \frac{4(C^2 + \lambda\gamma)}{T}. \end{aligned}$$

The upper bound of $\sum_{t=2}^{T} (t-1)\delta_t$ in Lemma 2 is then provided in Lemma 3.

Lemma 3 (Lemma 3 in [1]). Assume $||\boldsymbol{\xi}_t - \mathbf{K}||_F \leq G$, and $||\mathbf{Z}_t - \mathbf{Z}^*||_F \leq H$, $\forall t > 2$. With a probability at least $1 - \delta$, $\sum_{t=2}^{T} (t-1)\delta_t$ is upper bounded by

$$\sum_{t=2}^{T} (t-1)\delta_t \leq \frac{1}{2} \sum_{t=2}^{T} (t-1) || \mathbf{Z}_t - \mathbf{Z}^* ||_F^2 + 2G^2 \tau (T-1) + \frac{2}{3} GH(T-1)\tau + GH(T-1),$$

where $\tau = \log \frac{\lceil 2 \log_2 T \rceil}{\delta}$.

Based on Lemma 2 and Lemma 3, the following upper bound of $||\mathbf{Z}_{T+1} - \mathbf{Z}^*||_F^2$ holds with a probability at least $1 - \delta$,

$$||\mathbf{Z}_{T+1} - \mathbf{Z}^*||_F^2 \le \frac{4}{T} \left(C^2 + \lambda\gamma + 2G^2\tau + \frac{2}{3}GH\tau + GH \right).$$
(12)

In Lemma 4, the upper bounds for C, γ , G, and H are provided.

¹These lemmas can be found in the supplementary material of [1] that can be downloaded from https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf

Lemma 4 (Lemma 4 in [1]). Assume $||\boldsymbol{\xi}||_F \leq L$. By setting $\eta_t = \frac{2}{t}$, it can be obtained that

$$C^2 \le 10L^2, \ \gamma \le 2L \max_{t \in [T]} \sqrt{r_t}, \ G = 2L, \ and \ H = 3L,$$

where r_t is the rank of \mathbf{Z}_t .

By substituting the upper bounds in Lemma 4 into (12) and replacing \mathbf{Z}_{T+1} and \mathbf{Z}^* with $\mathbf{B}_{T+1}\mathbf{B}_{T+1}^{\top}$ and $\mathbf{B}^*\mathbf{B}^{*\top}$, respectively, we eventually obtain

$$\frac{||\mathbf{B}_{T+1}\mathbf{B}_{T+1}^{+} - \mathbf{B}^{*}\mathbf{B}^{*+}||_{F}^{2}}{N^{2}} \leq \frac{8}{T} \left[\lambda \frac{L}{n^{2}} \max_{t \in [T]} \sqrt{r_{t}} + \frac{L^{2}}{n^{2}} \left(8 + 6 \log \frac{\lceil 2 \log_{2} T \rceil}{\delta} \right) \right] = O(\frac{1}{T})$$

APPENDIX C Proof of Theorem 3

In the *t*-th iteration of FEA, the following procedure is executed for Q_t iterations. The central server broadcasts a vector \mathbf{c}_q to all M user devices. User device m computes a local vector $\mathbf{d}_m = \mathbf{W}_t[m]^\top \mathbf{W}_t[m] \mathbf{c}_q$ and then uploads \mathbf{d}_m to the central server. Since $\mathbf{W}_t[m] = [\sqrt{\frac{m}{D}} \mathbf{A}_t[m], \sqrt{1 - \eta_t} \mathbf{B}_{t-1}[m]] \in \mathbb{R}^{N_m \times (r_{t-1}+D)}, \mathbf{W}_t[m]^\top \mathbf{W}_t[m]$ is a matrix with dimensions of $(r_{t-1} + D) \times (r_{t-1} + D)$. Hence, the dimensions of both \mathbf{c}_q and \mathbf{d}_m also equal $(r_{t-1} + D)$. As a result, the communication cost equals $2Q_tM(r_{t-1} + D)$ in the *t*-th iteration of FEA, which shows that the communication cost is linear to $M(r_{t-1} + D)$.

For the centralized method, the user devices first uploads $\{\mathbf{W}_t[m], m \in \mathcal{M}\}\$ to the central server, the central server then sends the updated submatrix $\mathbf{B}_t[m]$ to user device m for all $m \in \mathcal{M}$. Thus, its communication cost equals $N(r_{t-1} + r_t + D)$ in the *t*-th iteration of FEA. Thus, CELA reduces the communication cost of FEA with a rate

$$\eta_t = 1 - \frac{2Q_t M(r_{t-1} + D)}{N(r_{t-1} + r_t + D)} \ge 1 - \frac{2MQ_t}{N}.$$

Note that $Q_t \leq r_{t-1} + D$ according to the analysis in Section IV-A. Eventually, we have

$$1 - \frac{2M(r_{t-1} + D)}{N} \le \eta_t.$$

APPENDIX D Proof of Theorem 4

Define $\mathbf{K} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}$, and $\mathbf{P} = \mathbf{U}\mathbf{\Lambda}^{\frac{1}{2}}$. The low-rank approximation of \mathbf{K} with rank *s* is denoted as $\mathbf{K}_s = \mathbf{U}\mathbf{\Lambda}_s\mathbf{U}^{\top}$, and $\mathbf{P}_s = \mathbf{U}\mathbf{\Lambda}_s^{\frac{1}{2}}$ where the diagonal of $\mathbf{\Lambda}_s$ contains the *s* largest eigenvalues of \mathbf{K} while its rest diagonal entries are all zero. The output of FEA at iteration *t* is an estimation of \mathbf{K}_s , denoted as $\widetilde{\mathbf{K}}_t$, and $\widetilde{\mathbf{K}}_t = \widetilde{\mathbf{P}}_t \widetilde{\mathbf{P}}_t^{\top}$.

The following two lemmas will be used in the proof of Theorem 3.

Lemma 5. Given $\widetilde{\mathbf{K}}_t$, the following inequality holds with a probability at least $1 - \delta$ for any rank k projection matrix $\mathbf{\Pi} \in \mathbb{R}^{N \times N}$,

$$\operatorname{Tr}(\mathbf{\Pi}(\mathbf{K}_s - \widetilde{\mathbf{K}}_t)) \le O(\sqrt{\frac{s}{t\delta}}N)$$

Proof. Since Π is a rank-k projection matrix, it is obvious that $\operatorname{Tr}(\Pi(\mathbf{K}_s - \widetilde{\mathbf{K}}_t)) \leq ||\mathbf{K}_s - \widetilde{\mathbf{K}}_t||_*$ For a rank-s matrix \mathbf{A} , $||\mathbf{A}||_*^2 \leq s||\mathbf{A}||_F^2$ holds for its Nuclear norm and its Frobenius norm Hence, $||\mathbf{K}_s - \widetilde{\mathbf{K}}_t||_* \leq \sqrt{s}||\mathbf{K}_s - \widetilde{\mathbf{K}}_t||_F$. By Lemma 4, \mathbf{Z}_t converges to \mathbf{Z}^* at an $O(N^2/t\delta)$ rate. Note \mathbf{Z}^* has the same eigenvectors as \mathbf{K}_s . Thus, $\widetilde{\mathbf{K}}_t$ constructed based on \mathbf{Z}_t also converges to \mathbf{K}_s at an $O(N^2/t\delta)$ rate with a probability at least $1 - \delta$, i.e., $||\mathbf{K}_s - \widetilde{\mathbf{K}}_t||_F^2$ has an upper bound as

$$||\mathbf{K}_s - \widetilde{\mathbf{K}}_t||_F^2 \le O(N^2/t\delta).$$

Hence, the following inequality holds with a probability of at least $1-\delta$

$$\operatorname{Tr}(\mathbf{\Pi}(\mathbf{K}_s - \widetilde{\mathbf{K}}_t)) \leq \sqrt{s} ||\mathbf{K}_s - \widetilde{\mathbf{K}}_t||_F \leq O(\sqrt{\frac{s}{t\delta}}N).$$

Lemma 6. Fix an error parameter $\varepsilon \in (0,1)$. For any rank k projection matrix $\mathbf{\Pi} \in \mathbb{R}^{N \times N}$,

$$\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K}-\widetilde{\mathbf{K}}_t)\mathbf{\Pi}\right) \leq (\varepsilon + \frac{k}{s})||\mathbf{P} - \mathbf{\Pi}\mathbf{P}||_F^2.$$

Proof. Tr $(\mathbf{\Pi}(\mathbf{K} - \mathbf{K}_s)\mathbf{\Pi})$ can be expanded as

$$\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K}-\mathbf{K}_{s})\mathbf{\Pi}\right)=\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{P}\mathbf{P}^{\top}-\mathbf{P}_{s}\mathbf{P}_{s}^{\top})\mathbf{\Pi}\right).$$

Note that $\operatorname{Tr}\left(\mathbf{P}\mathbf{P}^{\top} - \mathbf{P}_{s}\mathbf{P}_{s}^{\top}\right) = \sum_{i=s+1}^{N} \sigma_{i}^{2}(\mathbf{P})$, where $\sigma_{i}(\mathbf{P})$ is the *i*-th singular value of **P**. After multiplied with a rank-k projection matrix **I**, the maximal value of $\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K} - \mathbf{K}_{s})\right)$ is achieved when the largest k singular values in $\{\sigma_{i}(\mathbf{P}), i = s+1, ..., N\}$ are kept. Hence, we have

Tr
$$(\mathbf{\Pi}(\mathbf{K} - \mathbf{K}_s)\mathbf{\Pi}) \le \sum_{i=s+1}^{s+k} \sigma_i^2(\mathbf{P}).$$
 (13)

 $\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K}-\widetilde{\mathbf{K}}_t)\mathbf{\Pi}\right)$ is then expanded as

$$\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K} - \widetilde{\mathbf{K}}_{t})\mathbf{\Pi}\right)$$
$$= \operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K} - \mathbf{K}_{s})\mathbf{\Pi}\right) + \operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K}_{s} - \widetilde{\mathbf{K}}_{t})\mathbf{\Pi}\right)$$
$$\leq \sum_{i=s+1}^{s+k} \sigma_{i}^{2}(\mathbf{P}) + \operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K}_{s} - \widetilde{\mathbf{K}}_{t})\mathbf{\Pi}\right)$$
$$= \sum_{i=s+1}^{s+k} \sigma_{i}^{2}(\mathbf{P}) + \operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K}_{s} - \widetilde{\mathbf{K}}_{t})\right)$$
$$\leq \sum_{i=s+1}^{s+k} \sigma_{i}^{2}(\mathbf{P}) + O(\sqrt{\frac{s}{t\delta}}N)$$
$$\leq \frac{k}{s} \sum_{i=k+1}^{s+k} \sigma_{i}^{2}(\mathbf{P}) + O(\sqrt{\frac{s}{t\delta}}N),$$

where the first inequality comes from Eq. (13), the second inequality comes from Lemma 5, and $k \leq s$.

For $\sum_{i=k+1}^{s+k} \sigma_i^2(\mathbf{P})$, we have

i

$$\sum_{k=k+1}^{s+k} \sigma_i^2(\mathbf{P}) \le \sum_{i=k+1}^N \sigma_i^2(\mathbf{P}) = ||\mathbf{P} - \mathbf{P}_k||_F^2$$

Since $||\mathbf{P}||_F^2 = \text{Tr}K = O(N)$, we have $||\mathbf{P} - \mathbf{P}_k||_F^2 = O(N)$ Thus, $O(\sqrt{\frac{s}{t\delta}}N)$ can be rewritten as $\varepsilon ||\mathbf{P} - \mathbf{P}_k||_F^2$ where ε is still at the order of $O(\sqrt{\frac{s}{t\delta}})$. As a result, we have

$$\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K}-\widetilde{\mathbf{K}}_t)\mathbf{\Pi}\right) \leq (\varepsilon + \frac{k}{s})||\mathbf{P}-\mathbf{P}_k||_F^2$$

Since $||\mathbf{P} - \mathbf{P}_k||_F^2$ is the minimal value of $||\mathbf{P} - \mathbf{\Pi}\mathbf{P}||_F^2$ for any Π , we then have

$$\operatorname{Tr}\left(\mathbf{\Pi}(\mathbf{K} - \widetilde{\mathbf{K}}_t)\mathbf{\Pi}\right) \le (\varepsilon + \frac{k}{s})||\mathbf{P} - \mathbf{\Pi}\mathbf{P}||_F^2.$$

After completing the proofs of Lemma 5 and Lemma 6, we then finish the rest proof of Theorem 3 as follows. It can be obtained that

$$\begin{aligned} &||(\mathbf{I}_N - \mathbf{\Pi})\mathbf{P}||_F^2 - ||(\mathbf{I}_N - \mathbf{\Pi})\widetilde{\mathbf{P}}_t||_F^2 \\ &= \mathrm{Tr}((\mathbf{I}_N - \mathbf{\Pi})\mathbf{P}\mathbf{P}^\top) - \mathrm{Tr}((\mathbf{I}_N - \mathbf{\Pi})\widetilde{\mathbf{P}}_t\widetilde{\mathbf{P}}_t^\top) \\ &= \mathrm{Tr}(\mathbf{P}\mathbf{P}^\top - \widetilde{\mathbf{P}}_t\widetilde{\mathbf{P}}_t^\top) - \mathrm{Tr}(\mathbf{\Pi}(\mathbf{P}\mathbf{P}^\top - \widetilde{\mathbf{P}}_t\widetilde{\mathbf{P}}_t^\top)\mathbf{\Pi}). \end{aligned}$$

Let $\alpha = \text{Tr}(\mathbf{P}\mathbf{P}^{\top} - \widetilde{\mathbf{P}}_t \widetilde{\mathbf{P}}_t^{\top})$, and then the above equation can be rewritten as

$$||(\mathbf{I}_N - \mathbf{\Pi})\mathbf{P}||_F^2 + \operatorname{Tr}(\mathbf{\Pi}(\mathbf{P}\mathbf{P}^\top - \widetilde{\mathbf{P}}_t \widetilde{\mathbf{P}}_t^\top)\mathbf{\Pi}) = \alpha + ||(\mathbf{I}_N - \mathbf{\Pi})\widetilde{\mathbf{P}}_t|^{\frac{1}{2}}$$

After sufficient iterations, both α and $\operatorname{Tr}(\mathbf{\Pi}(\mathbf{P}\mathbf{P}^{\top} - \widetilde{\mathbf{P}}_t \widetilde{\mathbf{P}}_t^{\top})\mathbf{\Pi})$ are non-negative with a high probability. Thus, by Lemma 6 it holds that

$$\begin{aligned} &||(\mathbf{I}_{N} - \mathbf{\Pi})\mathbf{P}||_{F}^{2} \\ \leq & \alpha + ||(\mathbf{I}_{N} - \mathbf{\Pi})\widetilde{\mathbf{P}}_{t}||_{F}^{2} \\ = &||(\mathbf{I}_{N} - \mathbf{\Pi})\mathbf{P}||_{F}^{2} + \operatorname{Tr}(\mathbf{\Pi}(\mathbf{P}\mathbf{P}^{\top} - \widetilde{\mathbf{P}}_{t}\widetilde{\mathbf{P}}_{t}^{\top})\mathbf{\Pi}) \\ \leq & (1 + \varepsilon + \frac{k}{s})||(\mathbf{I}_{N} - \mathbf{\Pi})\mathbf{P}||_{F}^{2}. \end{aligned}$$
(14)

Based on (14), Theorem 3 can be proved as follows. Let $\mathbf{\Pi} = \widetilde{\mathbf{Y}}_t \widetilde{\mathbf{L}}_t \widetilde{\mathbf{Y}}_t^{\top}$, where $\widetilde{\mathbf{Y}}_t$ is the indicator matrix obtained by applying a γ -approximate algorithm to \mathbf{P}_t , then

$$\begin{aligned} ||(\mathbf{I}_N - \widetilde{\mathbf{Y}}_t \widetilde{\mathbf{L}}_t \widetilde{\mathbf{Y}}_t^{\top}) \mathbf{P}||_F^2 &\leq \alpha + ||(\mathbf{I}_N - \widetilde{\mathbf{Y}}_t \widetilde{\mathbf{L}}_t \widetilde{\mathbf{Y}}_t^{\top}) \widetilde{\mathbf{P}}_t ||_F^2 \\ &\leq \alpha + \gamma ||(\mathbf{I}_N - \widetilde{\mathbf{Y}}_t^* \widetilde{\mathbf{L}}_t^* \widetilde{\mathbf{Y}}_t^{*\top}) \widetilde{\mathbf{P}}_t ||_F^2, \end{aligned}$$

where $\widetilde{\mathbf{Y}}_t^*$ is the optimal indicator matrix for the linear kmeans problem on $\widetilde{\mathbf{P}}_t$. Since $\gamma > 1$, it follows that

$$\begin{aligned} &\alpha + \gamma || (\mathbf{I}_N - \widetilde{\mathbf{Y}}_t^* \widetilde{\mathbf{L}}_t^* \widetilde{\mathbf{Y}}_t^{*\top}) \widetilde{\mathbf{P}}_t ||_F^2 \\ \leq &\alpha + \gamma || (\mathbf{I}_N - \mathbf{Y}^* \mathbf{L}^* \mathbf{Y}^{*\top}) \widetilde{\mathbf{P}}_t ||_F^2 \\ \leq &\gamma (1 + \varepsilon + \frac{k}{s}) || (\mathbf{I}_N - \mathbf{Y}^* \mathbf{L}^* \mathbf{Y}^{*\top}) \mathbf{P} ||_F^2. \end{aligned}$$

Thus,

$$||(\mathbf{I}_N - \widetilde{\mathbf{Y}}_t \widetilde{\mathbf{L}}_t \widetilde{\mathbf{Y}}_t^{\top})\mathbf{P}||_F^2 \le \gamma (1 + \varepsilon + \frac{k}{s})||(\mathbf{I}_N - \mathbf{Y}^* \mathbf{L}^* {\mathbf{Y}^*}^{\top})\mathbf{P}||_F^2$$

which is equivalent to $f_K(\widetilde{\mathbf{Y}}_t) \leq \gamma(1 + \varepsilon + \frac{k}{s}) \min_{\mathbf{Y}} f_K(\mathbf{Y}).$

APPENDIX E DISCUSSION ON PRIVACY PRESERVATION

If the central server collects sufficient random feature vectors of a data samples, then it is possible for the central server to recover the data samples from these random features. The reason is as follows. A random feature vector of a data sample \mathbf{x}_i has the form $\cos(\boldsymbol{\omega}^\top \mathbf{x}_i + b)$ where the $\boldsymbol{\omega}$ and b are known by the central server. Since the value of $\boldsymbol{\omega}^{\top} \mathbf{x}_i + b$ cannot be arbitrarily large, the central server can determine the value of $\boldsymbol{\omega}^{\top} \mathbf{x}_i + b$ for each random feature vector if sufficient such random features are collected. The data sample x_i can be recovered by solving a system of linear equations.

In FedKKM, the above recovering operation is infeasible, which is proved by the following lemma.

Lemma 7. Based on the collected vectors $\{\mathbf{g}_{q} =$ $\mathbf{W}_t^{\top} \mathbf{W}_t \mathbf{c}_q, q = 1, \dots, Q$, the central server can at most recover the matrix $\mathbf{W}_t^{\top} \mathbf{W}_t$ via matrix operations. Moreover, recovering the matrix \mathbf{A}_t from the matrix $\mathbf{W}_t^{\top} \mathbf{W}_t$ is an illposed problem with infinite solutions.

Proof. In FedKKM, the central server collects the vectors $\{\mathbf{g}_q = \mathbf{W}_t^{\top} \mathbf{W}_t \mathbf{c}_q, q = 1, ..., Q\}$. If $\mathbf{W}_t^{\top} \mathbf{W}_t$ is a full-rank matrix, and Q equals the rank of $\mathbf{W}_t^{\top} \mathbf{W}_t$, the central server can compute $\mathbf{W}_t^{\mathsf{T}} \mathbf{W}_t$ based on the matrices $\mathbf{G} = [\mathbf{g}_1, ..., \mathbf{g}_O]$ and $\mathbf{C} = [\mathbf{c}_1, ..., \mathbf{c}_Q], \text{ i.e.,}$

$$\mathbf{W}_t^{\top} \mathbf{W}_t = \mathbf{G} \mathbf{C}^{-1},$$

where C^{-1} is the inverse matrix of C. Since

$$\mathbf{W}_{t}^{\top}\mathbf{W}_{t} = \begin{bmatrix} \frac{\eta_{t}}{D}\mathbf{A}_{t}^{\top}\mathbf{A}_{t} & \sqrt{\frac{\eta_{t}(1-\eta_{t})}{D}}\mathbf{A}_{t}^{\top}\mathbf{B}_{t-1} \\ \sqrt{\frac{\eta_{t}(1-\eta_{t})}{D}}\mathbf{B}_{t-1}^{\top}\mathbf{A}_{t} & (1-\eta_{t})\mathbf{B}_{t}^{\top}\mathbf{B}_{t-1} \end{bmatrix},$$

 $\mathbf{A}_t^{\top} \mathbf{A}_t \text{ can be recovered from } \mathbf{W}_t^{\top} \mathbf{W}_t.$ For a matrix $\mathbf{A}_t \in \mathbb{R}^{N \times D}$, a matrix $\mathbf{A}' \in \mathbb{R}^{N \times D}$ can be constructed via

$$\mathbf{A}' = \mathbf{U}_o \mathbf{A}_t,$$

where $\mathbf{U}_o \in \mathbb{R}^{N imes N}$ is an arbitrary orthogonal matrix with $\mathbf{U}_o^\top \mathbf{U}_o = \mathbf{I}_n$. By this construction, it can be derived that

$$\mathbf{A}'^{\top}\mathbf{A}' = \mathbf{A}_t^{\top}\mathbf{U}_o^{\top}\mathbf{U}_o\mathbf{A}_t = \mathbf{A}_t^{\top}\mathbf{A}_t.$$

Since there exist infinite matrices \mathbf{U}_o satisfying $\mathbf{U}_o^{\top}\mathbf{U}_o = \mathbf{I}_n$, the problem $\mathbf{A}_t^{\top}\mathbf{A}_t = \mathbf{A}'^{\top}\mathbf{A}'$ has infinite solutions. Hence, recovering the random feature matrix \mathbf{A}_t from $\mathbf{A}_t^{\top} \mathbf{A}_t$ is an ill-posed problem with infinite solutions.

By Lemma 7, the central server cannot recover A_t from $\mathbf{A}_t^{\top} \mathbf{A}_t$. Without such random feature vectors, it is infeasible for the central server to recover users' data via matrix operations.

REFERENCES

[1] L. Zhang, T. Yang, J. Yi, R. Jin, and Z.-H. Zhou, "Stochastic optimization for kernel PCA," in Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 2316-2322.