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I. PROOF OF THEOREM 1

Let P, ;(wp,[l]) denote the objective function of problem
Ql, i.e.,

P (wy[l])=C Zm: max{0,1 — B; — y; W, [Z]Ta(xi)[l]}
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In the ¢-th iteration of block boosting, block w,,[!] of the local
parameter vector W, = [W,,[1]7, ..., w,,,[L]T]T is optimized
by first solving the dual problem of problem €;:
am l z}
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As the optimal solution oy, ,(¢) to the dual problem is obtained,
it can be transformed to the optimal solution w,,[l](g) to
problem €; via w,,,[l](¢) = A, [l]a:‘n}l(q). Let w,,,[l](¢ — 1)
denote the initial value of w,,[l] in the g-th iteration, then we

have

st. 0<apm,; <C,i= 172, eery Nim.«

Prg(win[ll(g = 1)) = Pra(win[l](q))- (1
Let
Win(g—1)
=wn[lg=1)", s wnlll(g—=1) 7, ., wm[Ll(g = 1)T]T
Won(q)
=wnlg=1)", s wnlll(@) T s Wi [Ll(g = 1) T]T,

then we have

= m,l(wm[l](q - 1)) - Pm,l(wm[l}(q))'

Based on equation (II]), we have

Equation indicates that the sequence of local training loss
(P (Wi (0), ..., Py (Wi, (q), ...) is non-increasing when the
local parameter vector is optimized by block boosting. Since
P, () is a strongly convex function, if the training loss cannot
be further reduced, then the optimal local parameter vector
w, is obtained.
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II. PROOF OF THEOREM 2

In the (¢ 4 1)-th iteration of Fed-KSVM, edge device m
initially holds a local parameter vector w,, (t) = A, o, (t),
and it employs block boosting to obtain the optimal solution
wi(t+1) to

=C Z max{0,1 — yzfm(xz)}

minPy, (Wi W, (t + 1))
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where fm(xl) = %(v‘vm(t—&— 1) +w,,) "a(x;). Based on the
duality, w}, (¢ + 1) can be also expressed by

Wi (t+1) = A, (t+ 1),

where o, (t + 1) is the optimal solution to

maxD,, (oun; Wm(t +1)):=
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By applying Lemma 1 in [1]] to the dual objective function
Dy (@m; Wi (t + 1)), we have

E[Di (e, (t + 1); Win (£ 4+ 1)) — D (0 (£); Winn (¢ + 1))
Z%E[P"L(W’m(t); Wm(t + 1)) - DTVL(aTTL(t); Wm(t + 1))]7
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where s, = miny, >



Note that

M
Z P (W (£): Win (t 4 1)) = Dy (Qyn (£); W (t + 1))
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and
P(w(t)) — D(a(t))
N
=03 max{0, 1~ e fx)} + 4 w0
1=1 1 N
- (—§\|Aa(t)\|2 + Z (1))
7CZmax{O 1—yf Xz )y — Z% )+ [[w(t)]>.
Thus,
M
> Po(Win (£); W (t + 1)) = Dy (€t (£); W ( + 1))

a (t+1);wy(t+1)) —
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>3 %”E[P (Wi (t+1); Wi (1)) = Do (@ (£); W (£ + 1))]
m=1

> FEIP(w(t) = D(e(t))],

where s = min,, Sy,.

By using Jensen inequality, we have

S EIDy (@, (14 1); Wt + 1) Do (6 W0t + 1)
:%E[D([al(t), 0 (1), g (B])]
— B (t), (1), e (0)])]
:%E[D([al(t), s G (£) + Acm (1), oy ant (B)])]
_ %E[D([al(t), s (8), oo et (B)])]
E[D (e (t) + Aoj‘\}“) ey (t) + Aaj\ﬂj(t)])}
CEBD([1 (), oy (), oo cnr (B)])]
=E[D(a(t +1)) — D(«(t))]
<E[D(a™) (a(t))]-

Hence we have
E[D(a") — D(a(t))] > ——E[P(w(t)) — D(a(t))].

Since D(a(t)) < D(a*) = P(w*), then

s
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— y;| > 0. Then, according to Proposition 1 in

E[P(w(t)) — P(w")]. (4

—y;| for all ¢ that satisfy

[1]], we have
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Thus, the convergence rate of CoCoA (QE:noted as Q) is © =
according to [2], where N = max,, N,,. Then

2nD(a la™ —alf’.
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we have

E[D(a”) — D(e(t))]
<O'(E[D(e") = D(a(0)))) ®)
=0'E[D(a”)].
By combining equation [] and equation [3} we finally obtain
E[P(w(t)) — P(w")]
< O'NM
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E[P(w")].
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