Supplementary Material for A Memory-Efficient Federated Kernel Support Vector Machine for Edge Devices

Xiaochen Zhou and Xudong Wang, Fellow, IEEE

I. Proof of Theorem 1

Let $P_{m, l}\left(\mathbf{w}_{m}[l]\right)$ denote the objective function of problem Ω_{l}, i.e.,

$$
\begin{aligned}
P_{m, l}\left(\mathbf{w}_{m}[l]\right) & =C \sum_{i=1}^{N_{m}} \max \left\{0,1-B_{i}-y_{i} \mathbf{w}_{m}[l]^{\top} \mathbf{a}\left(\mathbf{x}_{i}\right)[l]\right\} \\
& +\frac{1}{2}\left\|\mathbf{w}_{m}[l]\right\|^{2}
\end{aligned}
$$

In the q-th iteration of block boosting, block $\mathbf{w}_{m}[l]$ of the local parameter vector $\mathbf{w}_{m}=\left[\mathbf{w}_{m}[1]^{\top}, \ldots, \mathbf{w}_{m}[L]^{\top}\right]^{\top}$ is optimized by first solving the dual problem of problem Ω_{l} :

$$
\begin{aligned}
& \max _{\boldsymbol{\alpha}_{m, l}}\left\{-\frac{1}{2}\left\|\mathbf{A}_{m}[l] \boldsymbol{\alpha}_{m, l}\right\|^{2}+\sum_{i}^{N_{m}}\left(1-B_{i}(q)\right) \alpha_{m, l, i}\right\} \\
& \text { s.t. } \quad 0 \leq \alpha_{m, l, i} \leq C, i=1,2, \ldots, N_{m}
\end{aligned}
$$

As the optimal solution $\boldsymbol{\alpha}_{m, l}^{*}(q)$ to the dual problem is obtained, it can be transformed to the optimal solution $\mathbf{w}_{m}[l](q)$ to problem Ω_{l} via $\mathbf{w}_{m}[l](q)=\mathbf{A}_{m}[l] \boldsymbol{\alpha}_{m, l}^{*}(q)$. Let $\mathbf{w}_{m}[l](q-1)$ denote the initial value of $\mathbf{w}_{m}[l]$ in the q-th iteration, then we have

$$
\begin{equation*}
P_{m, l}\left(\mathbf{w}_{m}[l](q-1)\right) \geq P_{m, l}\left(\mathbf{w}_{m}[l](q)\right) \tag{1}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \mathbf{w}_{m}(q-1) \\
= & {\left[\mathbf{w}_{m}[1](q-1)^{\top}, \ldots, \mathbf{w}_{m}[l](q-1)^{\top}, \ldots, \mathbf{w}_{m}[L](q-1)^{\top}\right]^{\top} } \\
& \mathbf{w}_{m}(q) \\
= & {\left[\mathbf{w}_{m}[1](q-1)^{\top}, \ldots, \mathbf{w}_{m}[l](q)^{\top}, \ldots, \mathbf{w}_{m}[L](q-1)^{\top}\right]^{\top}, }
\end{aligned}
$$

then we have

$$
\begin{aligned}
& P_{m}\left(\mathbf{w}_{m}(q-1)\right)-P_{m}\left(\mathbf{w}_{m}(q)\right) \\
= & P_{m, l}\left(\mathbf{w}_{m}[l](q-1)\right)-P_{m, l}\left(\mathbf{w}_{m}[l](q)\right) .
\end{aligned}
$$

Based on equation (1), we have

$$
\begin{equation*}
P_{m}\left(\mathbf{w}_{m}(q-1)\right) \geq P_{m}\left(\mathbf{w}_{m}(q)\right) \tag{2}
\end{equation*}
$$

Equation (2) indicates that the sequence of local training loss $\left(P_{m}\left(\mathbf{w}_{m}(0), \ldots, P_{m}\left(\mathbf{w}_{m}(q), \ldots\right)\right.\right.$ is non-increasing when the local parameter vector is optimized by block boosting. Since $P_{m}(\cdot)$ is a strongly convex function, if the training loss cannot be further reduced, then the optimal local parameter vector \mathbf{w}_{m}^{*} is obtained.

[^0]
II. Proof of Theorem 2

In the $(t+1)$-th iteration of Fed-KSVM, edge device m initially holds a local parameter vector $\mathbf{w}_{m}(t)=\mathbf{A}_{m} \boldsymbol{\alpha}_{m}(t)$, and it employs block boosting to obtain the optimal solution $\mathbf{w}_{m}^{*}(t+1)$ to

$$
\begin{aligned}
& \min _{\mathbf{w}_{m}} P_{m}\left(\mathbf{w}_{m} ; \overline{\mathbf{w}}_{m}(t+1)\right):=C \sum_{i \in \mathcal{I}_{m}} \max \left\{0,1-y_{i} \hat{f}_{m}\left(\mathbf{x}_{i}\right)\right\} \\
& \quad+\frac{1}{2}\left\|\mathbf{w}_{m}\right\|^{2}
\end{aligned}
$$

where $\hat{f}_{m}\left(\mathbf{x}_{i}\right)=\frac{1}{\sqrt{D}}\left(\overline{\mathbf{w}}_{m}(t+1)+\mathbf{w}_{m}\right)^{\top} \mathbf{a}\left(\mathbf{x}_{i}\right)$. Based on the duality, $\mathbf{w}_{m}^{*}(t+1)$ can be also expressed by

$$
\mathbf{w}_{m}^{*}(t+1)=\mathbf{A}_{m} \boldsymbol{\alpha}_{m}^{*}(t+1)
$$

where $\boldsymbol{\alpha}_{m}^{*}(t+1)$ is the optimal solution to

$$
\begin{aligned}
& \max _{\boldsymbol{\alpha}_{m}} D_{m}\left(\boldsymbol{\alpha}_{m} ; \overline{\mathbf{w}}_{m}(t+1)\right):=-\frac{1}{2}\left\|\overline{\mathbf{w}}_{m}(t+1)+\mathbf{A}_{m} \boldsymbol{\alpha}_{m}\right\|^{2} \\
& \quad+\sum_{i \in \mathcal{I}_{m}} \alpha_{i}+\frac{1}{2}\left\|\overline{\mathbf{w}}_{m}(t+1)\right\|^{2} \\
& \text { s.t. } \quad 0 \leq \alpha_{i} \leq C, i \in \mathcal{I}_{m}
\end{aligned}
$$

By applying Lemma 1 in [1] to the dual objective function $D_{m}\left(\boldsymbol{\alpha}_{m} ; \overline{\mathbf{w}}_{m}(t+1)\right)$, we have

$$
\begin{align*}
& \mathbb{E}\left[D_{m}\left(\boldsymbol{\alpha}_{m}^{*}(t+1) ; \overline{\mathbf{w}}_{m}(t+1)\right)-D_{m}\left(\boldsymbol{\alpha}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)\right] \\
\geq & \frac{s_{m}}{N} \mathbb{E}\left[P_{m}\left(\mathbf{w}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)-D_{m}\left(\boldsymbol{\alpha}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)\right] \tag{3}
\end{align*}
$$

where $s_{m}=\min _{\mathbf{w}} \frac{\sum_{i \in \mathcal{I}_{m}}\left|\frac{1}{\sqrt{D}} \mathbf{w}^{\top} a\left(\mathbf{x}_{i}\right)-y_{i}\right|}{\sum_{i \in \mathcal{I}_{m}}\left(\frac{1}{D}| | a\left(\mathbf{x}_{i}\right) \|^{2}+\left|\frac{1}{\sqrt{D}} \mathbf{w}^{\top} a\left(\mathbf{x}_{i}\right)-y_{i}\right|\right)}$.

Note that

$$
\begin{aligned}
& \sum_{m=1}^{M} P_{m}\left(\mathbf{w}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)-D_{m}\left(\boldsymbol{\alpha}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right) \\
= & C \sum_{i=1}^{N} \max \left\{0,1-y_{i} \hat{f}\left(\mathbf{x}_{i}\right)\right\}-\sum_{i}^{N} \alpha_{i}(t) \\
& +\sum_{m=1}^{M}\left(\frac{1}{2}\left\|\mathbf{w}_{m}(t)\right\|^{2}+\frac{1}{2}\left\|\overline{\mathbf{w}}_{m}(t+1)+\mathbf{A}_{m} \boldsymbol{\alpha}_{m}(t)\right\|^{2}\right. \\
& \left.-\frac{1}{2}\left\|\overline{\mathbf{w}}_{m}(t+1)\right\|^{2}\right) \\
= & C \sum_{i=1}^{N} \max \left\{0,1-y_{i} \hat{f}\left(\mathbf{x}_{i}\right)\right\}-\sum_{i}^{N} \alpha_{i}(t) \\
& +\sum_{m=1}^{M}\left(\frac{1}{2}\left\|\mathbf{w}_{m}(t)\right\|^{2}+\frac{1}{2}\|\mathbf{w}(t)\|^{2}-\frac{1}{2}\left\|\overline{\mathbf{w}}_{m}(t+1)\right\|^{2}\right) \\
= & C \sum_{i=1}^{N} \max \left\{0,1-y_{i} \hat{f}\left(\mathbf{x}_{i}\right)\right\}-\sum_{i}^{N} \alpha_{i}(t)+\|\mathbf{w}(t)\|^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
& P(\mathbf{w}(t))-D(\boldsymbol{\alpha}(t)) \\
= & C \sum_{i=1}^{N} \max \left\{0,1-y_{i} \hat{f}\left(\mathbf{x}_{i}\right)\right\}+\frac{1}{2}\|\mathbf{w}(t)\|^{2} \\
& -\left(-\frac{1}{2}\|\mathbf{A} \boldsymbol{\alpha}(t)\|^{2}+\sum_{i}^{N} \alpha_{i}(t)\right) \\
= & C \sum_{i=1}^{N} \max \left\{0,1-y_{i} \hat{f}\left(\mathbf{x}_{i}\right)\right\}-\sum_{i}^{N} \alpha_{i}(t)+\|\mathbf{w}(t)\|^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{m=1}^{M} P_{m}\left(\mathbf{w}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)-D_{m}\left(\boldsymbol{\alpha}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right) \\
= & P(\mathbf{w}(t))-D(\boldsymbol{\alpha}(t)) .
\end{aligned}
$$

By summing up equation 3 from 1 to M, we have
By using Jensen inequality, we have

$$
\begin{aligned}
& \frac{1}{M} \mathbb{E}\left[D_{m}\left(\boldsymbol{\alpha}_{m}^{*}(t+1) ; \overline{\mathbf{w}}_{m}(t+1)\right)-D_{m}\left(\boldsymbol{\alpha}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)\right] \\
= & \frac{1}{M} \mathbb{E}\left[D\left(\left[\boldsymbol{\alpha}_{1}(t), \ldots, \boldsymbol{\alpha}_{m}^{*}(t+1), \ldots, \boldsymbol{\alpha}_{M}(t)\right]\right)\right] \\
& -\frac{1}{M} \mathbb{E}\left[D\left(\left[\boldsymbol{\alpha}_{1}(t), \ldots, \boldsymbol{\alpha}_{m}(t), \ldots, \boldsymbol{\alpha}_{M}(t)\right]\right)\right] \\
= & \frac{1}{M} \mathbb{E}\left[D\left(\left[\boldsymbol{\alpha}_{1}(t), \ldots, \boldsymbol{\alpha}_{m}(t)+\Delta \boldsymbol{\alpha}_{m}(t), \ldots, \boldsymbol{\alpha}_{M}(t)\right]\right)\right] \\
& -\frac{1}{M} \mathbb{E}\left[D\left(\left[\boldsymbol{\alpha}_{1}(t), \ldots, \boldsymbol{\alpha}_{m}(t), \ldots, \boldsymbol{\alpha}_{M}(t)\right]\right)\right] \\
\leq & \mathbb{E}\left[D\left(\left[\boldsymbol{\alpha}_{1}(t)+\frac{\Delta \boldsymbol{\alpha}_{1}(t)}{M}, \ldots, \boldsymbol{\alpha}_{M}(t)+\frac{\Delta \boldsymbol{\alpha}_{M}(t)}{M}\right]\right)\right] \\
& -\mathbb{E}\left[D\left(\left[\boldsymbol{\alpha}_{1}(t), \ldots, \boldsymbol{\alpha}_{m}(t), \ldots, \boldsymbol{\alpha}_{M}(t)\right]\right)\right] \\
= & \mathbb{E}[D(\boldsymbol{\alpha}(t+1))-D(\boldsymbol{\alpha}(t))] \\
\leq & \mathbb{E}\left[D\left(\boldsymbol{\alpha}^{*}\right)-D(\boldsymbol{\alpha}(t))\right]
\end{aligned}
$$

Hence we have

$$
\mathbb{E}\left[D\left(\boldsymbol{\alpha}^{*}\right)-D(\boldsymbol{\alpha}(t))\right] \geq \frac{s}{N M} \mathbb{E}[P(\mathbf{w}(t))-D(\boldsymbol{\alpha}(t))]
$$

Since $D(\boldsymbol{\alpha}(t)) \leq D\left(\boldsymbol{\alpha}^{*}\right)=P\left(\mathbf{w}^{*}\right)$, then

$$
\begin{equation*}
\mathbb{E}\left[D\left(\boldsymbol{\alpha}^{*}\right)-D(\boldsymbol{\alpha}(t))\right] \geq \frac{s}{N M} \mathbb{E}\left[P(\mathbf{w}(t))-P\left(\mathbf{w}^{*}\right)\right] \tag{4}
\end{equation*}
$$

Let $\xi=\min _{i}\left|\frac{1}{\sqrt{D}} \mathbf{w}^{* \top} a\left(\mathbf{x}_{i}\right)-y_{i}\right|$ for all i that satisfy $\left|\frac{1}{\sqrt{D}} \mathbf{w}^{* \top} a\left(\mathbf{x}_{i}\right)-y_{i}\right|>0$. Then, according to Proposition 1 in [1], we have

$$
\begin{aligned}
& D\left(\eta \boldsymbol{\alpha}^{*}+(1-\eta) \boldsymbol{\alpha}\right) \\
\geq & \eta D\left(\boldsymbol{\alpha}^{*}\right)+(1-\eta) D(\boldsymbol{\alpha})+\frac{\xi \eta(1-\eta)}{2 N}\left\|\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}\right\|^{2}
\end{aligned}
$$

Thus, the convergence rate of CoCoA (denoted as Θ) is $\Theta=$ $1-\frac{\xi}{M(\xi+C \tilde{N})}$ according to [2], where $\tilde{N}=\max _{m} N_{m}$. Then we have

$$
\begin{align*}
& \mathbb{E}\left[D\left(\boldsymbol{\alpha}^{*}\right)-D(\boldsymbol{\alpha}(t))\right] \\
\leq & \Theta^{t}\left(\mathbb{E}\left[D\left(\boldsymbol{\alpha}^{*}\right)-D(\boldsymbol{\alpha}(0))\right]\right) \tag{5}\\
= & \Theta^{t} \mathbb{E}\left[D\left(\boldsymbol{\alpha}^{*}\right)\right] .
\end{align*}
$$

By combining equation 4 and equation 55, we finally obtain

$$
\begin{aligned}
& \mathbb{E}\left[P(\mathbf{w}(t))-P\left(\mathbf{w}^{*}\right)\right] \\
\leq & \frac{\Theta^{t} N M}{s} \mathbb{E}\left[D\left(\boldsymbol{\alpha}^{*}\right)\right] \\
= & \frac{\Theta^{t} N M}{s} \mathbb{E}\left[P\left(\mathbf{w}^{*}\right)\right] .
\end{aligned}
$$

REFERENCES

$$
\begin{aligned}
& \sum_{m=1}^{M} \mathbb{E}\left[D_{m}\left(\boldsymbol{\alpha}_{m}^{*}(t+1) ; \overline{\mathbf{w}}_{m}(t+1)\right)-D_{m}\left(\boldsymbol{\alpha}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)\right] \\
& \geq \sum_{m=1}^{M} \frac{s_{m}}{N} \mathbb{E}\left[P_{m}\left(\mathbf{w}_{m}(t+1) ; \overline{\mathbf{w}}_{m}(t)\right)-D_{m}\left(\boldsymbol{\alpha}_{m}(t) ; \overline{\mathbf{w}}_{m}(t+1)\right)\right] \\
& \geq \frac{s}{N} \mathbb{E}[P(\mathbf{w}(t))-D(\boldsymbol{\alpha}(t))],
\end{aligned}
$$

[1] S. Shalev-Shwartz and T. Zhang, "Stochastic dual coordinate ascent methods for regularized loss minimization." Journal of Machine Learning Research (JMLR), vol. 14, no. 2, 2013.
2] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, and M. I. Jordan, "Communication-efficient distributed dual coordinate ascent," in Advances in Neural Information Processing Systems (Neurips), 2014, pp. 3068-3076.
where $s=\min _{m} s_{m}$.

[^0]: The authors are with UM-SJTU Joint Institute, Shanghai Jiao Tong University. Corresponding author: Xudong Wang, Email: wxudong@ieee.org

