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I. PROOF OF THEOREM 1

Let Pm,l(wm[l]) denote the objective function of problem
Ωl, i.e.,

Pm,l(wm[l]) = C

Nm∑
i=1

max{0, 1−Bi − yiwm[l]⊤a(xi)[l]}

+
1

2
||wm[l]||2

In the q-th iteration of block boosting, block wm[l] of the local
parameter vector wm = [wm[1]⊤, ...,wm[L]⊤]⊤ is optimized
by first solving the dual problem of problem Ωl:

max
αm,l

{
−1

2
||Am[l]αm,l||2 +

Nm∑
i

(1−Bi(q))αm,l,i

}
s.t. 0 ≤ αm,l,i ≤ C, i = 1, 2, ..., Nm.

As the optimal solution α∗
m,l(q) to the dual problem is obtained,

it can be transformed to the optimal solution wm[l](q) to
problem Ωl via wm[l](q) = Am[l]α∗

m,l(q). Let wm[l](q − 1)
denote the initial value of wm[l] in the q-th iteration, then we
have

Pm,l(wm[l](q − 1)) ≥ Pm,l(wm[l](q)). (1)

Let

wm(q − 1)

=[wm[1](q − 1)⊤, ...,wm[l](q − 1)⊤, ...,wm[L](q − 1)⊤]⊤

wm(q)

=[wm[1](q − 1)⊤, ...,wm[l](q)⊤, ...,wm[L](q − 1)⊤]⊤,

then we have

Pm(wm(q − 1))− Pm(wm(q))

=Pm,l(wm[l](q − 1))− Pm,l(wm[l](q)).

Based on equation (1), we have

Pm(wm(q − 1)) ≥ Pm(wm(q)). (2)

Equation (2) indicates that the sequence of local training loss
(Pm(wm(0), ..., Pm(wm(q), ...) is non-increasing when the
local parameter vector is optimized by block boosting. Since
Pm(·) is a strongly convex function, if the training loss cannot
be further reduced, then the optimal local parameter vector
w∗

m is obtained.
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II. PROOF OF THEOREM 2

In the (t + 1)-th iteration of Fed-KSVM, edge device m
initially holds a local parameter vector wm(t) = Amαm(t),
and it employs block boosting to obtain the optimal solution
w∗

m(t+ 1) to

min
wm

Pm(wm; w̄m(t+ 1)) := C
∑
i∈Im

max{0, 1− yif̂m(xi)}

+
1

2
||wm||2,

where f̂m(xi) =
1√
D
(w̄m(t+1)+wm)⊤a(xi). Based on the

duality, w∗
m(t+ 1) can be also expressed by

w∗
m(t+ 1) = Amα∗

m(t+ 1),

where α∗
m(t+ 1) is the optimal solution to

max
αm

Dm(αm; w̄m(t+ 1)) := −1

2
||w̄m(t+ 1) +Amαm||2

+
∑
i∈Im

αi +
1

2
||w̄m(t+ 1)||2

s.t. 0 ≤ αi ≤ C, i ∈ Im.

By applying Lemma 1 in [1] to the dual objective function
Dm(αm; w̄m(t+ 1)), we have

E[Dm(α∗
m(t+ 1); w̄m(t+ 1))−Dm(αm(t); w̄m(t+ 1))]

≥sm
N

E[Pm(wm(t); w̄m(t+ 1))−Dm(αm(t); w̄m(t+ 1))],

(3)

where sm = minw

∑
i∈Im

| 1√
D
w⊤a(xi)−yi|∑

i∈Im
( 1
D ||a(xi)||2+| 1√

D
w⊤a(xi)−yi|)

.
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Note that

M∑
m=1

Pm(wm(t); w̄m(t+ 1))−Dm(αm(t); w̄m(t+ 1))

=C

N∑
i=1

max{0, 1− yif̂(xi)} −
N∑
i

αi(t)

+

M∑
m=1

(
1

2
||wm(t)||2 + 1

2
||w̄m(t+ 1) +Amαm(t)||2

− 1

2
||w̄m(t+ 1)||2)

=C

N∑
i=1

max{0, 1− yif̂(xi)} −
N∑
i

αi(t)

+

M∑
m=1

(
1

2
||wm(t)||2 + 1

2
||w(t)||2 − 1

2
||w̄m(t+ 1)||2)

=C

N∑
i=1

max{0, 1− yif̂(xi)} −
N∑
i

αi(t) + ||w(t)||2,

and

P (w(t))−D(α(t))

=C

N∑
i=1

max{0, 1− yif̂(xi)}+
1

2
||w(t)||2

− (−1

2
||Aα(t)||2 +

N∑
i

αi(t))

=C

N∑
i=1

max{0, 1− yif̂(xi)} −
N∑
i

αi(t) + ||w(t)||2.

Thus,

M∑
m=1

Pm(wm(t); w̄m(t+ 1))−Dm(αm(t); w̄m(t+ 1))

=P (w(t))−D(α(t)).

By summing up equation 3 from 1 to M , we have

M∑
m=1

E[Dm(α∗
m(t+ 1); w̄m(t+ 1))−Dm(αm(t); w̄m(t+ 1))]

≥
M∑

m=1

sm
N

E[Pm(wm(t+ 1); w̄m(t))−Dm(αm(t); w̄m(t+ 1))]

≥ s

N
E[P (w(t))−D(α(t))],

where s = minm sm.

By using Jensen inequality, we have

1

M
E[Dm(α∗

m(t+ 1); w̄m(t+ 1))−Dm(αm(t); w̄m(t+ 1))]

=
1

M
E[D([α1(t), ...,α

∗
m(t+ 1), ...,αM (t)])]

− 1

M
E[D([α1(t), ...,αm(t), ...,αM (t)])]

=
1

M
E[D([α1(t), ...,αm(t) + ∆αm(t), ...,αM (t)])]

− 1

M
E[D([α1(t), ...,αm(t), ...,αM (t)])]

≤E[D([α1(t) +
∆α1(t)

M
, ...,αM (t) +

∆αM (t)

M
])]

− E[D([α1(t), ...,αm(t), ...,αM (t)])]

=E[D(α(t+ 1))−D(α(t))]

≤E[D(α∗)−D(α(t))].

Hence we have

E[D(α∗)−D(α(t))] ≥ s

NM
E[P (w(t))−D(α(t))].

Since D(α(t)) ≤ D(α∗) = P (w∗), then

E[D(α∗)−D(α(t))] ≥ s

NM
E[P (w(t))− P (w∗)]. (4)

Let ξ = mini | 1√
D
w∗⊤a(xi)− yi| for all i that satisfy

| 1√
D
w∗⊤a(xi)− yi| > 0. Then, according to Proposition 1 in

[1], we have

D(ηα∗ + (1− η)α)

≥ηD(α∗) + (1− η)D(α) +
ξη(1− η)

2N
||α∗ −α||2.

Thus, the convergence rate of CoCoA (denoted as Θ) is Θ =
1− ξ

M(ξ+CÑ)
according to [2], where Ñ = maxm Nm. Then

we have

E[D(α∗)−D(α(t))]

≤Θt(E[D(α∗)−D(α(0))])

=ΘtE[D(α∗)].

(5)

By combining equation 4 and equation 5, we finally obtain

E[P (w(t))− P (w∗)]

≤ΘtNM

s
E[D(α∗)]

=
ΘtNM

s
E[P (w∗)].
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