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ABSTRACT

This paper studies the distributed scheduling of traffic flows with

arbitrary deadlines that arrive at their source nodes and are trans-

mitted to different destination nodes viamultiple intermediate nodes

in a wireless mesh network. When a flow is successfully delivered

to its destination, a reward will be obtained, which is the embod-

iment of network performance and can be expressed by metrics

such as throughput or network utility. The objective is tomaximize

the aggregate reward of all the deadline-constrained flows, which

can be transformed into the constrained Markov decision process

(CMDP). According to the transformation, a policy gradient-based

distributed scheduling (PGDS) method is first proposed, where a

primary reward and an auxiliary reward are designed to incen-

tivize each node to independently schedule network resources such

as power and subcarriers. The primary reward is generated when

flows are successfully delivered to their destinations. The auxiliary

reward, designed based on potential-based reward shaping (PBRS)

using local information of data transmission, aims to accelerate the

convergence speed. Inside this method, a reward feedback scheme

is designed to let each node obtain the primary reward. Noting

that each node selecting resources independently may cause inter-

ference and collision which leads to instability of data transmis-

sion, a policy gradient-based resource determination algorithm is

proposed. Moreover, the optimality and convergence of the PGDS

method are derived. Especially, when a policy obtained by the al-

gorithm is not matched with the optimal policy but can better deal

with the interference, an asymptotic optimum still exists and is fur-

ther derived. The theoretical results are further validated through

simulations. Taking throughput as a reward, simulations also show

that the PGDSmethod improves the throughput by at least 70% and

reduces the end-to-end delay.
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1 INTRODUCTION

Scheduling real-time traffic flows inwirelessmesh networks has at-

tracted wide attention due to emerging applications [3, 10, 34–36],

e.g. in Internet of Things (IoT), autonomous driving, and cyber-

physical systems, where time-sensitive packets need to be deliv-

ered from their sources to destinations across the whole networks

[1, 22, 28].When these packets are successfully transmitted to their

destinations within the deadline, rewards will be generated. The

reward is an embodiment of the network performance and can

be expressed in terms of throughput or network utility. The dead-

line means each flow should be delivered to its destination node

on time before a given time requirement, otherwise it will be out-

of-date and discarded. Unlike single-hop networks, where a cen-

tral node can coordinate the traffic flows and perform schedul-

ing methods [3, 4, 8, 9, 14, 17, 24], wireless mesh networks are

difficult to centrally manage due to the large distance between

source-destination pairs. At the same time, the time-frequency re-

sources in the network are limited, which makes the simultaneous

transmission of data flows by non-adjacent links interfere with

each other and lead to transmission failure. Furthermore, differ-

ent deadline-constrained flows fiercely compete for resources to

achieve on-time delivery and thus be coupledwith each other, which

greatly increases the difficulty of distributed scheduling. Nowa-

days, someworks of literature have been trying to solve these prob-

lems but with little success [15, 26, 31, 32], such as high-complexity

scheduling methods with large overhead and cannot achieve the

global optimum.

This paper makes important progress on distributedly schedul-

ing deadline-constrained traffic flows in wireless mesh networks.

The objective is to maximize the aggregate reward of flows that

reach their destinations within their deadlines. To this end, this

paper first formulates the reward maximization problem from a

single-packet scheduling perspective considering interference in

the network and establishes a relationship between scheduling net-

work resources of packets at each node and the constrainedMarkov

decision process (CMDP). A policy gradient-based distributed sched-

uling (PGDS) method based on the relationship is then designed,

which quickly adapts to changes in network resources and con-

verges to the global optimum. In this method, a primary reward

is generated after a packet is successfully delivered to the destina-

tion node before its deadline, which is fed back to all intermediate

nodes on the end-to-end path and used to guide the scheduling

decision. Considering the sparsity of the reward generated by the

destination node, the lag of feedback information will increase the

convergence time. To improve the convergence speed, an auxiliary

reward is designed using potential-based reward shaping (PBRS).

To manage the interference, a resource determination algorithm is

proposed, where each nodemaintains and updates the interference

field and avoids collision resources to improve the stability of the

PGDS method. To fully understand the performance of the PGDS

method in a theoretical way and clearly know the influence of var-

ious parameters in the network, the optimality and convergence

properties are derived theoretically as O(1/) ) which is verified to

be fast enough to cope with channel variations by simulations. Fi-

nally, taking throughput as a reward, simulation results verify the

performance of PGDS under throughput, delay, multiple network
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topologies, and different channel conditions, and then the maxi-

mum throughput are improved by at least 70% compared with the

existing methods. The main contributions of this paper are sum-

marized as follows.

• Forwirelessmesh networks, the rewardmaximizationmodel

is theoretically established, which is then decomposed to

propose a PGDSmethod. The relationship between the PGDS

method and CMDP is analyzed in detail, and themethod can

be effectively used to schedule flows in wireless networks in

a distributed manner.

• A PGDS method with PBRS is proposed. In this method, a

reward feedback scheme is proposed to guide the schedul-

ing on each node, an auxiliary reward based on PBRS is de-

signed to accelerate the convergence, and the resource de-

termination algorithm is proposed to manage the interfer-

ence.

• The optimality and convergence are derived for the proposed

PGDS method. These theoretical performances are verified

and compared with existing methods by simulations.

The paper is structured as follows. In Section 2, the related work

is discussed. In Section 3, the network model and problem formu-

lation are performed. In Section 4, problem decomposition and the

relationshipwith CMDP are analyzed. In Section 5, a PGDSmethod

with PBRS is proposed. In Section 6, the performance of optimality

and convergence are derived. In Section 7, some important simu-

lation results are shown to illustrate the performance achieved by

the proposed method, and the paper is concluded in Section 8.

2 RELATED WORK

There is a rich literature on the scheduling of traffic flows with

deadline constraints in wireless networks to obtain maximal ag-

gregate rewards, which contains scheduling methods in wireless

single-hop networks, wiredmulti-hop networks, andwirelessmesh

or multi-hop networks. The reward can be network utility func-

tions or throughput.

In wireless single-hop networks, where each node can commu-

nicate directly with a central node, a common approach is to use

the node to coordinate the information of all flows and optimally

schedule them under their deadline constraints to obtain maximal

utility [3, 8, 14, 17, 24]. An error rate-based prediction model to im-

prove the deadline-constrained throughput is proposed in [17], a

bidding game algorithm between a central node and its neighbors

to obtain maximal utility is designed in [3, 14], and some central-

ized methods based on Lyapunov optimization [8, 24]. However,

these methods are difficult to extend to wireless mesh networks,

since it is hard to find a central node that can collect all the infor-

mation of flows from the whole network.

Inwiredmulti-hop networks, flows are generated at source nodes

and transmitted to their destination nodes via multiple interme-

diate nodes. If the flow exceeds its deadline, it is invalidated and

discarded. The scheduling methods mainly contain heuristic algo-

rithms without theoretical guarantees [5, 18], dynamic program-

ming [20], a polynomial-time approximation algorithm based on

the relaxation of the network utility maximization (NUM) prob-

lem [21], and distributed scheduling based on CMDP [31]. Since

these methods do not consider interference, they can not be di-

rectly extended towirelessmesh networks. However, a recentwork

in [31], which developed a connection with CMDP to design dis-

tributed scheduling to achieve throughput optimization, inspires

us to devise PGDS method. It proposed a distributed link selection

method for wired multi-hop networks with deadline-constrained

flows, where intermediate nodes use a received reward from desti-

nation nodes to decide the next-hop transmission link.

In wireless mesh networks, the problem becomes more compli-

cated considering interference. If the wireless channel is assumed

to be stable, some centralized scheduling methods that can achieve

maximal performance with deadline constraints can be used [11,

18, 19, 27, 41]. Note that these methods require large communica-

tion overhead to gather necessary information from all the nodes

for a central node to obtain scheduling results. Distributed sched-

uling methods are preferred since they allow each node to make lo-

cal scheduling decisions which is simpler andmore efficient. These

methods are mainly divided into three categories. First, the dead-

line is used to adjust the scheduling algorithm but not used as a

constraint so that the delay can not be guaranteed, such as carrier

sense multiple access (CSMA) scheduling algorithms with delay-

based backoff value [13, 15, 26, 33], back pressure-type controllers

adjusted by deadline [42], opportunistic scheduling with delay dif-

ferentiation [39]. Second, the deadline is relaxed to the average

delay constraint, such as a duality-based algorithm [12] and a max-

imum weight scheduling [40]. Thirdly, the deadline is constrained

but scheduling cannot reach the maximal performance, such as op-

portunistic scheduling [23] and adaptive CSMA [32]. Therefore, de-

vising a novel distributed scheduling method is an open and chal-

lenging problem.

3 NETWORK MODEL AND PROBLEM

FORMULATION

3.1 Network Model

Ageneral wirelessmesh network is considered in this paper, where

# nodes can generate, transmit, and receive flows. The topology

of the network is denoted by a unidirectional graph � = {V,L},

where V is the set of nodes in the network and L is the set of

links between adjacent nodes. Neighboring nodes communicate

with each other through wireless links. There is no central node in

the network that can collect information about all nodes and cen-

trally schedule resources. Considering that orthogonal frequency

division multiplexing (OFDM) is widely used in 6G and beyond

Wireless networks, the subcarrier and time slot that can be sched-

uled are defined as the network resources in this paper. Therefore,

nodes at each time slot can perform the scheduling of subcarriers

to transmit flows. Each node is in half-duplex mode, that is, it can

only receive or transmit flows in the same time slot. � real-time

flows are generated at their source nodes and transmitted to their

destination nodes through multiple intermediate nodes with each

flow having end-to-end deadline constraint g5 . The weight of flow

5 is F 5 , which is determined by its priority. While transmitting

flows in any time slot, each node needs to select subcarriers and

transmission power for flows at that node. The total subcarriers in

the network is� and themaximal transmission power at each node

is % . The channel gain from node 8 to node 9 is ℎ8 9 (0 ≤ ℎ8 9 ≤ 1).
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Wireless interference can prevent non-adjacent links from trans-

mitting flows at the same time, which increases the difficulty of

scheduling. For any node, it interferes with those nodes that can

receive its signal power. Interference field of node 8 is I8 (C), which

is defined as I8 (C) = { 9 | 9 ∈ V, %8ℎ
2
8 9 > %�}. %8 is the transmission

power at node 8 and %� is the detection threshold of interference.

To avoid transmission failure due to interference, all links that are

affected by node 8 cannot use more than � subcarriers.

3.2 Reward Maximization Problem

Note that any flow 5 is composed of packets, and each packet

has a deadline g5 . Distributed scheduling for any packet of flow

5 is shown in Fig. 1. A primary reward D (C) is generated after the

packet is successfully delivered to the destination node within the

deadline.D (C) is a function of the delivered packet, such as through-

put or utility functions. Define a unit packet to be denoted by f

and the set of all unit packets of flow 5 to be denoted by P5 (C)

(f ∈ P5 (C)). Without loss of generality, all flows in a network

can be represented as a combination of multiple unit packets. The

wireless mesh network considered in this paper is a time-slotted

system, the number of subcarriers and transmission power need

to be selected for each unit packet at each time slot. When a unit

packet is transmitted from the source node to the destination node,

its position (the node 8 where it is located) and time-till-deadline

(TTD) g are constantly changing. These two varying parameters

are used to define the state Bf (C) of the packet. Bf (C) ∈ S and S is

denoted as

S =
{
(8, g) |8 ∈ V, 0 ≤ g ≤ g5

}
. (1)

Scheduling the packet includes determining its next transmission

Figure 1: Distributed scheduling for packets of flow 5 .

node 9 and the number =c and power =p of subcarriers, which is

denoted as 0f (C). 0f (C) ∈ A and A is given by

A =
{
( 9, =c, =p) | 9 ∈ V8 , 0 ≤ =c ≤ �, 0 ≤ =p ≤ %

}
, (2)

whereV8 denotes the set of neighbor nodes of node 8 , which is also

a subset ofV . A scheduling policy c [0f (C) |Bf (C)] is defined as the

probability of choosing schedule 0f (C) in state Bf (C). The policy is

equal to 1 means definitely selects 0f (C). When the packet is suc-

cessfully delivered to the destination node, the reward is generated,

which is expressed as

AD [Bf (C), 0f (C), Bf (C + 1)] =

{
D (C), 9 is destination and g ≥ 0

0, otherwise.
(3)

The objective is to maximize the aggregate rewards of all the pack-

ets in the network. However, AD (·) can only be obtained at the

destination, which does not reflect the impact of the scheduling of

packets in intermediate nodes and makes it difficult to determine

the scheduling of intermediate nodes. Therefore, an auxiliary re-

wardH [Bf (C), 0f (C), Bf (C + 1)] needs to be designed to reflect the

global impact of the scheduling of intermediate nodes, and the new

reward can be expressed as

A [Bf (C), 0f (C), Bf (C + 1)]

= AD [Bf (C), 0f (C), Bf (C + 1)] + H [Bf (C), 0f (C), Bf (C + 1)] . (4)

Using the new reward, the expected cumulative rewards of the

packet with state Bf (C) is

'cA [Bf (C)] = Ec



g5 −1∑
:=0

A [Bf (C + :), 0f (C + :), Bf (C + : + 1)]



.

(5)

Distinguished from the auxiliary reward, AD (·) is called the pri-

mary reward. It should be emphasized that the role of the auxil-

iary reward is to facilitate the scheduling of packets by intermedi-

ate nodes, and it must not influence the scheduling policy c that

maximizes the primary reward. This means that the scheduling

policy obtained using the new reward is the same as the optimal

scheduling policy obtained with the primary reward, that is, the

policy-invariant auxiliary reward needs to be designed.

Moreover, constraints on the number and power of subcarriers

need to be established. Define 2 [Bf (C), 0f (C), Bf (C + 1)] is the num-

ber of subcarriers and ? [Bf (C), 0f (C), Bf (C + 1)] is the power se-

lected from state Bf (C) to Bf (C + 1), which are equal to =c and =p
in 0f (C) in (2), respectively. The expected number of subcarriers

under the policy c is

�cc [Bf (C)] = Ec {2 [Bf (C), 0f (C), Bf (C + 1)]} . (6)

The expected power under the policy c is

�cp [Bf (C)] = Ec {? [Bf (C), 0f (C), Bf (C + 1)]} . (7)

Considering the constraint on the number of subcarriers and the

transmit power of each node, the problem of maximizing the ag-

gregate new reward of all the packets is formulated as

max
c

lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5 '
c
A [Bf (C)] , (8)

lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 8 (C )∪PI8

(C )

�cc [Bf (C)] ≤ �,∀8 ∈ V,

(9)

lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 8 (C )

�cp [Bf (C)] ≤ %,∀8 ∈ V, (10)

where P5 8 represents the set of packets of flow 5 at node 8 and PI8
represents the set of packets in the interference field of node 8 .

4 PROBLEM DECOMPOSITION

Note that the subcarrier in (8) is a discrete variable and the power is

a continuous variable, the objective function can be either discrete
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or continuous, thus this is a mixed integer optimization problem

(MIOP). To solve theMIOP in a distributedway, the relationship be-

tween different states needs to be clarified first. Take the transmis-

sion of a unit packet of flow 5 as an example. In wireless mesh net-

works, a unit packet at state Bf (C) = (8, g) selects a scheduling way

0f (C) = ( 9, =c, =p) andwants to transmit to another state Bf (C+1) =

( 9, g − 1). This packet is not necessarily able to transmit to node

9 , but has a transition probability Pr(Bf (C + 1) |Bf (C), 0f (C)). This

probability is related to the channel characteristics of the current

transmission link and the transmission technology of the physical

layer, such as the coding and modulation methods. In the paper,

the probability is expressed as Pr((�#'8 9 ≥ (�#'�)Pre ((�#'8 9 ),

where (�#'8 9 means the signal-to-interference-noise ratio (SINR)

at node 9 and is denoted as

(�#'8 9 =
? [Bf (C), 0f (C), Bf (C + 1)] ℎ28 9

#0? [Bf (C), 0f (C), Bf (C + 1)] Δ2 + %I8
, (11)

where #0 is the power spectral density of additional white Gauss-

ian noise (AWGN),Δ2 is the subcarrier space, and %I8 is the interfer-

ence power from interference fieldI8 . %I8 =
∑
f∈PI8

? [Bf (C), 0f (C),

Bf (C + 1)]ℎ2
: 9

where : is the node in the interference field I8 . Pe

means the packet error rate under specific coding and modulation

methods. Note that this transition probability is only related to the

current link and has nothing to do with other links that the packet

passes through, that is

Pr [Bf (C + 1) |Bf (0), 0f (0), Bf (1), 0f (1), ..., Bf (C), 0f (C)]

= Pr [Bf (C + 1) |Bf (C), 0f (C)] . (12)

Therefore, the process of transmitting the packet from state Bf (C)

to the next state Bf (C +1) is independent of the historical state, that

is, it conforms to the Markov property.

It is stated above that the MIOP in (8) can be viewed as the

constrained Markov decision process (CMDP), and then the La-

grangian decomposition can be used. The detailed derivation pro-

cess is in Appendix A in [38] and the main result after the decom-

position is

L (c, _, `) = lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
8∈V

∑
f∈P5 8 (C )

'
c,_,`
AL [Bf (C)] , (13)

where the constant term is ignored, _ and ` are the Lagrange mul-

tipliers, and '
c,_,`
AL [Bf (C)] is to replace A (·) in (5) with AL (·). AL (·)

is the reward under the Lagrange multipliers and is derived as

AfL (C) = F 5 A
f (C) − _82

f (C) − `8?
f (C) −

_8

#8

∑
f ′∈PI8

(C )

2f
′

(C), (14)

where Af (C), 2f (C), and ?f (C) are simplified representations of A (·)

in (5), 2 (·) in (6), and ? (·) in (7).#8 is the number of packets at node

8 . It’s worth noting that Af
L
(C) can be viewed as two parts. One part

is the reward obtained for successful transmission, which is the

first three terms on the right-hand side of (22). The other part is

the effect brought by the transmission of other packets in the in-

terference field, which is the fourth term on the right side of (22).

Recall the Lagrangian in (13), it decomposes the packet schedul-

ing to each node, that is, the packets of each node can obtain and

constrain its own reward through the interference field, and then

these rewards can be used to achieve distributed scheduling.

For the above-transformed problems, CMDPprovides some stan-

dard algorithmic frameworks for solving them, such as value-based

and policy-based algorithms [2, 6, 30]. However, these algorithms

cannot be directly used to solve the transformed problem, and the

two main challenges are as follows. One is that the feasible region

is changing. Since the interference range changes with scheduling

and channel gain, the number of available subcarriers is constantly

changing. Therefore, when the scheduling policy is updated, the

feasible region also needs to be updated synchronously. The other

is the choice of scheduling policy. The collision occurs when the

total number of subcarriers selected by packets in the interference

field exceeds � . In the actual scheduling, it is necessary to avoid

this collision situation, so as to reduce the probability of transmis-

sion errors and improve the stability of the network. Note that the

distributed scheduling framework using value-based algorithms

proposed in wired multi-hop networks inspires the design in this

paper [31]. However, this framework cannot be applied to wire-

less multi-hop networks since it does not take into account the

effects of wireless interference. Considering that the value-based

algorithmmay converge to a local optimum and it is difficult to find

a global optimal policy when the action space and state space are

large, policy-based algorithm framework is adopted in this paper.

Therefore, this paper proposes a policy gradient-based distributed

scheduling (PGDS) method and details are designed in section 5.

5 SCHEME AND ALGORITHMS IN PGDS

METHOD WITH PBRS

In the PGDS method, when a packet reaches a state, it selects the

next-hop link, number of subcarriers, and power of the next-hop

transmission according to Algorithm 1. The packet then listens for

the selection of other states in the interference field and determines

whether the transmission needs to be performed. When the packet

is successfully delivered to the destination node, the destination

node will generate a reward. The reward is then fed back to each

node along the end-to-end path and used to update scheduling poli-

cies according to a reward feedback scheme in section 5.1. When

future packets arrive at these nodes, the number of subcarriers and

power can then be selected based on the scheduling policy. The

auxiliary reward, which is based on PBRS and can guarantee the

policy optimality is derived in section 5.2. In summary, based on

this method, any packet at any node in the network can decide the

resource to transmit in the next hop according to the scheduling

policy, so as to realize distributed scheduling. The PGDS frame-

work consists of three key parts: reward feedback scheme, auxil-

iary reward design, and policy gradient-based resource determina-

tion algorithm. The main design methods for these parts are de-

scribed in detail below.

5.1 Reward Feedback Scheme

The key to performing the PGDS method is that the rewards gen-

erated by the destination node need to affect all nodes along the

end-to-end path. This effect can be described by the derivation of
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'
c,_,`
AL in (13), which is denoted by

'
c,_,`
AL [Bf (C)] =

∑
0f (C ) ∈A8

c [0f (C) |Bf (C)] {Pr(·)

[
AfL (C) + '

c,_,`
AL [Bf (C + 1)]

]
+ [1 − Pr(·)]'

c,_,`
AL [B′f (C + 1)]

}
, (15)

where Pr(·) = Pr[Bf (C + 1) |Bf (C), 0f (C)], Bf (C) = (8, g), Bf (C + 1) =

( 9, g − 1), and B′f (C) = (8, g − 1). The above derivation shows that

in order to know the global impact of scheduling subcarriers and

power in a state, it is necessary to know the expected cumulative

reward in the next state, and so on until the end of the destina-

tion node. This means that the destination node needs to feed back

the generated reward so that every intermediate node knows the

global impact of its schedule.

The reward feedback scheme is designed to realize the above

process as shown in Fig. 2. The scheme includes the establishment

of a feedback table and the backtracking of rewards. When packets

are transmitted from the source node to the destination node, feed-

back tables are created on each node. The feedback table records

the current state, previous state, and next state of the packet shown

in Fig. 2. Since the transfer between states has Markov property,

these three states can effectively help the reward backtracking.More

specifically, the transmission of packets between different nodes

corresponds to the process of state transfer, and only packets be-

longing to the same flow can be transferred to each other.

When the packet is successfully delivered to the destination

node, the reward is generated according to (22). The reward is then

fed back to each node along the end-to-end path and the basic pro-

cess is described below. The reward needs to carry information

about which flow it belongs to and the state of the last hop. For

example, the reward at node 9 carries information: flow 5 , state

( 9, g − 1). When node 8 receives a reward from node 9 and needs

to find its next feedback node in Fig. 2, node 8 needs to check the

feedback table. According to the information carried by the reward,

node 8 first matches the "Next state" to this information. Since the

time of one-hop transmission is a unit time slot, node 8 can infer

the "Current state" of the reward should be (8, g). After matching

the "Next state" and "Current state" in the feedback table, node 8

can finally find the "Previous state". The identifier of the node in

the previous state is the next feedback node for the reward. In or-

der not to make the size of the feedback table too large, when the

reward determines the node that needs feedback, the information

belonging to the feedback path needs to be cleaned out at the node

in time. Therefore, according to the above reward feedback process,

the reward generated by the destination node can affect every node

on the end-to-end path.

Note that this section designs the process of reward feedback

from the perspective of scheme design. In practice, it is necessary

to design a specific signaling transmission protocol to ensure the

effective operation of the scheme, which will be studied in the fu-

ture.

5.2 Auxiliary Reward Design based on PBRS

Since only the destination node can generate a reward, it takes

some time for this reward to feedback to the intermediate node.

During this period, the intermediate nodes lack the information to

guide the scheduling, whichmakes the convergence speed slow. To

Figure 2: Reward feedback at node 8.

speed up the convergence, this paper designs an auxiliary reward

to assist the reward generated at the destination to complete fast

scheduling. Note that the auxiliary reward should not affect the

optimality of the scheduling policy, and only the information that

can be collected locally can be exploited. Potential-based reward

shaping (PBRS) has been proven to improve the convergence with-

out changing the optimality, but how to design an effective reward

shaping function needs to combine with the specific network situ-

ation. First, the representation of an auxiliary reward needs to be

designed. According to PBRS, it has the following result [25, 37].

Lemma 1 Recall that the new reward in (4), the policy-invariant

auxiliary reward should be formatted as

H[Bf (C), 0f (C), Bf (C + 1)] = q [Bf (C + 1)] − q [Bf (C)], (16)

where q (·) is a potential function and belongs to R.

Using the format of auxiliary reward in Lemma 1, the optimal

policy will not be changed. Then, we need to determine the metric

that will be used for designing the potential function. Noting that

the primary reward in (4) produced by the destination node is a

function of the successfully delivered packet, the auxiliary reward

should also have a metric related to it. The number of packets re-

ceived by the destination node is related to the number of packets

transmitted by the intermediate node. The fewer the number of

packets transmitted by the intermediate node, the fewer the num-

ber of packets successfully delivered to the destination node. From

this perspective, the number of packets transmitted by the inter-

mediate node is the bottleneck that limits the number of packets

delivered by the destination node. Therefore, the link that trans-

mits a large number of packets should be selected as far as pos-

sible, that is, the number of packets in the same state should be

used as a metric. This metric is denoted as DL [Bf (C)]. In addition,

to deliver the packet as soon as possible, it is necessary to select

the intermediate node as close to the destination node as possible

during scheduling, so the minimum number of hops from the in-

termediate node to the destination node should be used as a metric.

This metric is denoted as 3f8 where 8 is the same as that in Bf (C).

To ensure the consistency of convergence, the potential function

needs to have a consistent form with the primary reward, and the

potential function also needs to have a tendency to change to the

global optimum, that is, the maximum potential is at the destina-

tion node and the minimum potential is at the source node. Finally,

the potential function is designed as
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Theorem1 Suppose the format of an auxiliary reward in Lemma

1, the auxiliary reward in wireless mesh networks is designed as

H[Bf (C), 0f (C), Bf (C + 1)] =
DL [Bf (C + 1)]

3f 9
−
DL [Bf (C)]

3f8
,

where 9 is the same as that in Bf (C + 1).

3f8 and 3f 9 can be easily obtained by a simple distributed sig-

naling interaction protocol in [29]. The proof of policy invariance

with this potential function is derived in Appendix B in [38].

5.3 Determination of Resources

When one node receives feedback information using the reward

feedback scheme in section 5.1, it can calculate the scheduling pol-

icy c and select the number and power of subcarriers. Note that

the scheduling space is composed of the number and power of sub-

carriers and the next-hop transmission node. The power can be

divided into different levels and it is a discrete value. The num-

ber of subcarriers may be large in wideband communication sce-

narios, which means that the size of the scheduling space may

be large. However, most of the policy-based methods proposed to

solve a CMDP problem are not yet applicable to such a large space.

Policy gradient-based methods have the ability to deal with such

a large scheduling space, and have the theoretical global conver-

gence guarantee. Therefore, a policy gradient-based framework is

used to design the resource determination algorithm in Algorithm

1. In this framework, a parameterized policy c\ (\ ∈ R) is defined

as c\ (0 |B) =
exp(\B0 )∑

0′ ∈A exp(\B0′ )
, which is differentiable and tractable.

The policy gradient of the Lagrangian in (13) is derived in Appen-

dix C in [38] and the main result is

∇\L (c, _, `) = lim
)→∞

1

)

∑
5 ∈F

∑
8∈V

∑
f∈P5 8 (C )

∇\ logc\ [0f (C) |Bf (C)]

{
�
c,_,`
AL [Bf (C), 0f (C)] − '

c,_,`
AL [Bf (C)]

}
, (17)

where �
c,_,`
AL [Bf (C), 0f (C)] is the expected cumulative reward ob-

tained under the given Bf (C) and 0f (C). The parameterized gradi-

ent is given by

\B0 (C + 1) = \B0 (C) + [1 ∇\L (c, _, `) |Bf (C ),0f (C ) , (18)

where [1 is a step size. Consider the relationship between c\ (0 |B)

and \B0 , the policy gradient is obtained and shown in Algorithm 1.

The algorithm is used at any node 8 , =f denotes the bit number of

the unit packet, ()+ denotes the projection onto a positive real set

R+, ΔC denotes the unit time slot, and Bf (C) = (8, g).

Note thatwhen the number of subcarriers scheduled by all states

within the interference range exceeds � , the collision of packet

transmission will occur, which leads to packet transmission fail-

ure. Since there is no reward for this packet transmission failure, it

is actually equivalent to the packet giving up the transmission at

the current time slot, so Algorithm 1 uses the capacity unavailable

condition in line 13 to make these packets give up the transmission

in advance. When these packets finish scheduling resources inde-

pendently, they will broadcast their selection result and the reward

value in the history to all the nodes in the interference field. If a

packet finds that the sum of all subcarriers in its interference range

Algorithm 1: Policy Gradient-based Resource Determina-

tion.

Input: '
c,_,`
AL [Bf (C − 1)], policy c\B0 (C − 1), =f .

Output: '
c,_,`
AL [Bf (C)], c\B0 (C), 2̃ [Bf (C), 0f (C), Bf (C + 1)],

and ?̃ [Bf (C), 0f (C), Bf (C + 1)].

1 for Bf (C) ∈ S8 and C > 0 do

2 Calculate ∇\L (c, _, `) |Bf (C−1),0f (C−1) .

3 Policy gradient update:

c\B0 (C) =
c\B0 (C − 1)4[1 ∇\L(c,_,` ) |Bf (C−1),0f (C−1)∑
0∈A8

c\B0 (C)4
[1 ∇\L(c,_,` ) |Bf (C−1),0

4 Scheduling 0f (C) with the probability c\B0 (C): obtain

2f (C) and ?f (C).

5 Calculate the number of bits that can be transmitted

under the channel gain ℎ8 9 :

=̃ = 2f (C)Δ2 log2

(
1 +

?f (C )ℎ28 9
#02f (C )Δ2

)
ΔC .

6 while |=̃ − =f | > =n or =̃ ≠ 0 do

7 Repeat the above probabilistic scheduling and

calculate =̃.

8 if the number of repetitions reaches the limit then

9 2f (C) = 0 and ?f (C) = 0.

10 end

11 end

12 end

13 Calculate total number of subcarriers selected in node 8

and I8 : ; /* Capacity unavailable condition */

14

�8 =
∑
5 ∈F

∑
f∈P5 8 (C )∪PI8

(C )

2f (C)

15 if �8 > � then

16 Remove the scheduling with the smallest

'
c,_,`
AL [Bf (C − 1)] until �8 ≤ � .

17 Final resource for each state is 2̃f (C) and ?̃f (C).

18 end

19 Using the selected resources to update Lagrangian

multipliers:

_8 (C + 1) =

©­­­­«
_8 (C) + [2



� −

∑
5 ∈F

∑
f∈P5 8 (C )

∪PI8
(C )

�c2̃ [Bf (C)]




ª®®®®¬+
,

20

`8 (C + 1) =
©­«
`8 (C) + [3



% −

∑
5 ∈F

∑
f∈P5 8 (C )

�c
?̃
[Bf (C)]



ª®¬+

.

exceeds � , it will compare the reward values, and let the schedul-

ing with the minimum reward value give up the transmission in

this time slot, so as to ensure no interference. The above resource
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determination process needs to use a distributed signaling inter-

action protocol, which can be quickly implemented by some ex-

isting methods [7, 16], such as nucleus-based methods, which can

allocate the subcarriers required by each packet to orthogonal fre-

quencies. The non-interference transmission will make some pack-

ets give up the transmission in advance, the state of these packets is

also converted at the current node, and no reward will be obtained.

Therefore, the same effect as the interference-based transmission

will not affect the convergence of the distributed method to the

optimal scheduling policy. However, this will lead to a change in

scheduling policy and bring some errors, and detailed analysis and

derivation are shown in Appendix E in [38].

6 OPTIMALITY AND CONVERGENCE

This section derives the optimality and convergence properties of

the PGDS method. Considering that the algorithm in section 5.3

changes the scheduling results under capacity unavailable condi-

tion, it may lead to an error from the optimal scheduling. Therefore,

this section analyzes the optimality without the capacity unavail-

able condition first, and then considers the error caused by chang-

ing the scheduling results to further derive the optimality.

6.1 Without Capacity Unavailable Condition

Define the optimal policy as c∗ and the optimal expected cumula-

tive reward for each packet is '∗Af . The relationship between the

optimality of the PGDSmethod and the network parameters is cru-

cial, as this facilitates the dynamic management of the network.

The network parameters considered in this paper include the num-

ber of nodes # , the number of flows � , the number of subcarriers

� , and the maximum deadline constraint gmax. The global conver-

gence of PGDS method is derived in Appendix D in [38], and the

main result is shown below.

Theorem 2Without capacity unavailable condition, each state

will directly perform the selected number and power of subcarriers.

The optimality gap between the objective and optimal aggregate

reward '∗A is

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'cA [Bf (C)] − '∗Af

}
≤

6(#, �,�, gmax)

)
,

where 6 is the function of the network parameters shown in Ap-

pendix D in [38], and it also has a limited value.

Since 6 is limited, if the iteration time ) is large enough, it is

obtained that

lim
)→∞

6(#, �,�, gmax)

)
= 0. (19)

Therefore, the maximal aggregate reward will be obtained, and the

convergence rate is O( 1) ).

6.2 With Capacity Unavailable Condition

In wireless mesh networks, capacity unavailable condition in Algo-

rithm 1 is used to avoid collisions. As analyzed in section 5.3, the

collision of packet transmissions will lead to an error with the op-

timal scheduling result. Define X2 and X? are errors between Algo-

rithm 1 and optimal scheduling without capacity unavailable con-

dition. Detailed expressions are provided in Appendix E in [38],

and the main result is shown below.

Theorem 3 Without capacity unavailable condition, X2 and X?
occur, and the optimality gap between the objective and optimal

aggregate reward '∗A is

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'cA [Bf (C)] − '∗A

}
≤

6(#, �,�, gmax) + @(X2 , X? )

)
. (20)

where @ is the function of the errors shown in Appendix E in [38],

and it also has a limited value. It is worth noting that optimality

can still be achieved in the presence of errors.

7 PERFORMANCE EVALUATIONS

In this section, the optimality and convergence of the PGDSmethod

are first verified, then is to compare the performance difference be-

tween this approach and the current best-performing distributed

scheduling methods.

7.1 Verification of Optimality and Convergence

To clearly show the performance of the network, the reward func-

tion takes the form of throughput. Take the mesh topology with

16 nodes and 4 flows as an example. The relationship between the

throughput and different arrival rates is shown in Fig. 3(a). Arrival

rates 1,2,3, and 4 represent the sum rate of all the flows are 1, 2,

3, and 4 unit packet/slot, respectively. Each flow divides all the

sum arrival rates equally. It can be seen that when the arrival rate

is small, the convergence rate is faster, and throughput is propor-

tional to the arrival rate. When the arrival rate is large, throughput

tends to be saturated, and is limited by the maximum link capac-

ity, that is, the maximum transmit power per node, the number of

subcarriers, and the channel gain. In addition, the figure can also

reflect the rapid convergence, even under saturated network util-

ity, it only takes around 100 units of time slot to converge.

After that, the performance with and without auxiliary reward

is shown in Fig 3(b). At different arrival rates, the auxiliary reward

can significantly speed up the convergence. Note that the effect of

the auxiliary reward on improving the convergence speed does not

increase much as the arrival rate increases. The main reason is that

the auxiliary reward is only effective when the primary reward

does not return in the initial stage. Regardless of the arrival rate,

the effect of the auxiliary reward will continue to decrease as soon

as the primary reward starts to generate.

Next, the convergence time under different numbers of nodes in

the wireless network is carried out in Fig. 3(c). Flows are generated

from the node in the lower left corner and need to be delivered to

the destination node in the upper right corner. Since all the paths

of the data flow to the destination node can run through all nodes,

it can effectively reflect the influence of the number of network

nodes. It can be seen that when the number of nodes increases,

the convergence time increases similarly to the log function form,

which shows the correctness of the conclusion in Theorem 2. Note
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Figure 3: Verification of optimality and convergence of the PGDS method.

(a) Tree topology. (b) Grid topology. (c) Star topology.

Figure 4: Three typical topologies of wireless mesh net-

works.

that the increase in the number of flows is similar to the increase in

the arrival rate, so increasing the arrival rate can reflect the impact

of increasing the number of data flows to a certain extent. As the

arrival rate increases, the convergence time increases less than the

linear increase, in a manner similar to the log function.

7.2 Performance under Different Topologies

Tree, grid, and star topologies are classic wireless mesh network

topologies, which are considered in the simulation and shown in

Fig. 4. The difference between the three topologies lies in the num-

ber of neighbors of each node. A larger number of neighborsmeans

a larger scheduling space, which will lead to an increase in the

convergence time. A time-slotted system is used, where the unit

time slot is set as 0.25 ms and the length of the unit packet is 100

bits. The total number of subcarriers in the network is 20, the maxi-

mum transmit power of each node is 20 dBm. Links adopt the chan-

nel model of the 3GPP standard. The channel changes for a time

greater than twice the maximum end-to-end delay. Each flow has

its own arrival rate. The maximal deadline for flows to reach their

destination is assumed to be 10 unit time slots. The source and des-

tination nodes of data flow need to cover the edge nodes of the

network, so as to reflect the impact of the increase of network size.

The performance of the PGDS method in different topologies is

shown in Fig. 5. The result of throughput is shown in Fig. 5(a). Since

the tree topology has the smallest action space, it has a fast conver-

gence speed. With the help of auxiliary rewards, the action Spaces

of grid and star topologies are also reduced a lot, but the interfer-

ence range becomes larger in these two topologies, which leads to

a decrease in the convergence speed. The cumulative distribution

function (CDF) of the delay under the three topologies is shown

in Fig. 5(b). It can be observed that when the arrival rate increases,

more packets will stay in the intermediate nodes due to the limited

number of available bandwidth in the interference field, increasing

the delay. After that, the delay violation probability is simulated in

Fig. 5(c), where the horizontal coordinate represents the sum of the

arrival rates of all data flows. It can be seen that when the sum of

all data flow arrival rates does not exceed the maximum link ca-

pacity, PGDS method can effectively ensure the delay, that is, the

delay violation probability is about 0. As the arrival rate increases,

more and more packets are stuck at the source node or interme-

diate node. The TTD of these packets will continue to decrease

until it drops to 0, that is, the packet is invalid. Therefore, packets

are continuously discarded, which leads to an increase in the de-

lay violation probability. The increase in delay violation probabil-

ity means that the source node needs to reduce its data generation

rate, which belongs to the field of congestion control and is not

considered in this paper.

7.3 Comparisons with Existing Methods

Finally, the performance of the PGDS method is compared with

that of existingmethods. To illustrate the improved performance of

the proposed method, the simulation takes traditional CSMA as a

baseline and compares it with the most recent best-performing dis-

tributed scheduling method, that is adaptive CSMA in [32]. In the

traditional CSMA method, the node listens to the channel at each

unit slot, and performs backoff if the channel is idle, so that the

counter time is reduced by 1 unit slot, and the data is transmitted

when the counter time is 0. If a conflict occurs, double the counter

time. In the Adaptive CSMA method, each node has a counter for

its connected links, and the time generation of the counter follows

the exponential distribution of the mean of a parameter as a unit

time slot, and the adjustment of this parameter is in [32]. The per-

formance comparison of throughput is shown in Fig. 6(a), where

PGDS method outperforms the existing methods. The reason is an-

alyzed as follows. Since CSMAonly transmits data according to the
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Figure 5: Throughput and delay performance under different topologies using the PGDS method.
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Figure 6: Comparisons of throughput and delay with existing methods.

parameter of the timer, this parameter does not reflect the perfor-

mance of transmitting the data flow from source to destination, so

the performance is the worst. Adaptive CSMA can adjust the timer

size through the interaction of local nodes, but cannot obtain end-

to-end instructions, so a large number of packets are lost when

the delay constraint is very tight, resulting in low throughput. The

CDF of the delay under different arrival rates is shown in Fig. 6(b).

In CSMA, a large number of data packets are stuck in intermedi-

ate nodes, or fall into some kind of cycle and can not reach the

destination node, resulting in a long delay. Adaptive CSMA can re-

duce this effect by adjusting the window with local information,

to reduce the delay. However, only using local information can-

not know the end-to-end transmission situation, so this problem

cannot be fundamentally solved. The proposed PGDS method can

find the best transmission link according to the end-to-end feed-

back information, so it can effectively guarantee the end-to-end

delay. Furthermore, the effect of network variation is compared in

Fig. 6(c). In the simulation, the average channel quality is the same

for each link. "fast" means that the duration of the channel quality

variation on each link is less than the maximum end-to-end delay,

and "slow" means that the channel quality variation on each link

changes larger than twice the maximum end-to-end delay. It can

be seen that the rapid change of the channel will slow down the

convergence speed, the main reason is that the feedback reward

information has a lag, which is no longer applicable to the current

channel. However, since the statistical characteristics of the chan-

nel are not changed, it is still able to converge to the optimal value

in the end. Note that the PGDSmethod does not consider signaling

overhead. If signaling overhead is 20%, then the performance gain

will decrease 20%, which will be studied in the future.

8 CONCLUSION

In this paper, a policy gradient-based distributed scheduling (PGDS)

method with potential-based reward shaping (PBRS) for wireless

networks with end-to-end deadline constraints was proposed. The

method can achieve maximal throughput for wireless mesh net-

works and outperform the existing methods. Theoretically, the op-

timality and convergence rate of the method were derived, and

their relationship to network parameters was analyzed in detail.

Following the proposed distributed method, an interesting prob-

lem for future research is how to apply the method to wireless mo-

bile networks. How to integrate other technologies, such as beam-

forming, to further enhance the network performance is also an

important topic to study.
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A PROBLEM DECOMPOSITION

Recall the problem formulation in (8), the Lagrangian decomposi-

tion is denoted as

L(c, _, `) = lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5 '
c
A [Bf (C)] −

∑
8∈V

_8
1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 8 (C )∪PI8

(C )

�cc [Bf (C)] −

∑
8∈V

`8
1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 8 (C )

�cp [Bf (C)] +
∑
8∈V

_8� +
∑
8∈V

`8%,

where _8 and `8 are the Lagrangianmultipliers. Ignore the constant

value, it can be further derived as

L(c, _, `) = lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F




∑
f∈P5 (C )

F 5 '
c
A [Bf (C)] −

∑
8∈V

_8

∑
f∈P5 8 (C )∪PI8

(C )

�cc [Bf (C)] −
∑
8∈V

`8

∑
f∈P5 8 (C )

�cp [Bf (C)]




= lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
8∈V




∑
f∈P5 8 (C )

F 5 '
c
A [Bf (C)] −

_8

∑
f∈P5 8 (C )∪PI8

(C )

�cc [Bf (C)] − `8

∑
f∈P5 8 (C )

�cp [Bf (C)]




= lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
8∈V




∑
f∈P5 8 (C )

[
F 5 '

c
A [Bf (C)] −

_8�
c
c [Bf (C)] − `8�

c
p [Bf (C)]

]
− _8

∑
f∈PI8

(C )

�cc [Bf (C)]



.

Note that the last term is not related to f in P5 8 (C). Define the

number of packet at node 8 is #8 , then we can get

∑
f∈PI8

(C )

�cc [Bf (C)] =
1

#8

∑
f∈P5 8 (C )

∑
f∈PI8

(C )

�cc [Bf (C)] . (21)

Therefore, the Lagrangian is derived as

L(c, _, `) = lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
8∈V

∑
f∈P5 8 (C )

[
F 5 '

c
A [Bf (C)] −

_8�
c
c [Bf (C)] − `8�

c
p [Bf (C)] −

_8

#8

∑
f∈PI8

(C )

�cc [Bf (C)]


= lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
8∈V

∑
f∈P5 8 (C )

'
c,_,`
AL [Bf (C)] ,

where '
c,_,`
AL [Bf (C)] is to replace A (·) in (5) with AL (·). AL (·) is the

reward under the Lagrange multipliers and is given by

AfL (C) = F 5 A
f (C) − _82

f (C) − `8?
f (C) −

_8

#8

∑
f ′∈PI8

(C )

2f
′

(C), (22)

where Af (C), 2f (C), and ?f (C) are simplified representations of A (·)

in (5), 2 (·) in (6), and ? (·) in (7).

B PROOF OF THEOREM 1

Without considering the auxiliary reward, the cumulative reward

of any state Bf (C) is '
c
AD [Bf (C)] and

'cAD [Bf (C)] =
∑

0f (C ) ∈A

c [0f (C) |Bf (C)]�
c
AD [Bf (C), 0f (C)] . (23)

Under the optimal policy, �∗
AD [Bf (C), 0f (C)] should satisfy the Bell-

man equation, that is

�∗
AD [Bf (C), 0f (C)] =Ec {AD [Bf (C), 0f (C), Bf (C + 1)]+

max
0f (C+1) ∈A

�∗
AD [Bf (C + 1), 0f (C + 1)]

}
.

Suppose the potential function is
DL [Bf (C ) ]

3f8
. For the convenience of

expression, let B = Bf (C) = (8, g) and B′ = Bf (C + 1) = ( 9, g − 1). It

can be derived that

�∗
AD [B, 0] −

DL [B]

3f8
= Ec

{
AD [B, 0, B

′] + max
0′∈A

�∗
AD [B

′, 0′]

}
−
DL [B]

3f8

= Ec

{
AD [B, 0, B

′] +
DL [B

′]

3f 9
+ max
0′∈A

�∗
AD [B

′, 0′] −
DL [B

′]

3f 9

}
−
DL [B]

3f8

= Ec

{
AD [B, 0, B

′] +
DL [B

′]

3f 9
−
DL [B]

3f8
+ max
0′∈A

�∗
AD [B

′, 0′] −
DL [B

′]

3f 9

}

= Ec

{
A [B, 0, B′] + max

0′∈A
�∗
AD [B

′, 0′] −
DL [B

′]

3f 9

}
.

Let �cA [B, 0] = �∗
AD [B, 0] −

DL [B ]
3f8

, then we can get

�cA [B, 0] = Ec

{
A [B, 0, B′] + max

0′∈A
�cA [B

′, 0′]

}
. (24)

Therefore, for any state, �cA [B, 0] still satisfies the Bellman equa-

tion then it is also optimal. Finally, the optimal policy is obtained

as that without auxiliary reward.

C POLICY GRADIENT DERIVATION

Recall that the Lagrangian is given by

L (c, _, `) = lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
8∈V

∑
f∈P5 8 (C )

'
c,_,`
AL [Bf (C)] . (25)

A parameterized policy c\ is used to obtained the gradient, such

as c\ (0 |B) =
exp(\B0 )∑

0′ ∈A exp(\B,0′ )
, which is differentiable and tractable.

Utilizing the policy gradient theorem, the gradient for the objective
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function is

∇\L (c, _, `)

= lim
)→∞

1

)

)−1∑
C=0

∑
5 ∈F

∑
8∈V

∑
f∈P5 8 (C )

∇\ logc\ [0f (C) |Bf (C)]

�
c,_,`
AL [Bf (C), 0f (C)],

where

�
c,_,`
AL [Bf (C), 0f (C)]

= Ec



g5 −1∑
:=0

A
c,_,`
L

[Bf (C + :), 0f (C + :), Bf (C + : + 1)]

������ Bf (C), 0f (C)


.

(26)

Then, a general policy gradient updating method is \B0 (C + 1) =

\B0 (C) +[1∇\L (c, _, `) |B,0 . Nowadays, the natural policy gradient

(NPG) method is popular and has a faster convergence rate than

other policy gradient methods, in which the policy is updated as

\B0 (C + 1) = \B0 (C) + [1F
† [\B0 (C)] ∇\L (c, _, `) |B,0 , (27)

where F (\ ) is the Fisher information matrix and given by

F (\ ) = Ec
[
∇\ logc\ (0 |B) (∇\ logc\ (0 |B))

⊤
]
. (28)

F † takes the Moore-Penrose inverse of matrix F . Using the com-

patible function approximation error theorem, the policy gradient

is derived as

F † [\B0 (C)] ∇\L (c, _, `) |B,0

= �
c,_,`
AL [Bf (C) = B, 0f (C) = 0] − '

c,_,`
AL [Bf (C) = B] . (29)

By using the exponential relationship between policy c and \ , the

update of the policy can be obtained as

c\B0 (C) =
c\B0 (C − 1)4[1 ∇\L(c,_,` ) |Bf (C−1),0f (C−1)∑
0∈A8

c\B0 (C)4
[1 ∇\L(c,_,` ) |Bf (C−1),0

. (30)

D PROOF OF THEOREM 2

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'∗A [Bf (C)] − 'cA [Bf (C)]

}
≤

6(#, �,�, gmax)

)
,

Recall the objective function is

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5 '
c
A [Bf (C)] .

The optimal reward is '∗A [Bf (C)]. The optimality gap is

1

)

)−1∑
C=0

∑
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f∈P5 (C )

F 5
{
'∗A [Bf (C)] − 'cA [Bf (C)]

}

=
1
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C=0

Ec∗
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∑

0f (C ) ∈A

c∗ [0f (C) |Bf (C)]�
c
A [Bf (C), 0f (C)]


, (31)

where �cA [Bf (C), 0f (C)] is derived by the performance difference

theorem and is denoted by

�cA [Bf (C), 0f (C)] = �cA [Bf (C), 0f (C)] − 'cA [Bf (C)] . (32)

According to the PGDS method in Algorithm 1, it should be noted

that

c\B0 (C + 1) = c\B0 (C) exp
{
[1�

c,_,`
AL [Bf (C), 0f (C)]

}
/−1 [Bf (C)],

(33)

�
c,_,`
AL [Bf (C), 0f (C)] = �cA [Bf (C), 0f (C)] + _8 (C)�

c
2 [Bf (C), 0f (C)]+

`8 (C)�
c
? [Bf (C), 0f (C)],

(34)

where / is the normalized function, �c2 [Bf (C), 0f (C)] is the func-

tion related to the subcarriers and�c? [Bf (C), 0f (C)] is the function

related to the power constraint, which are defined in the same way

as �cA [Bf (C), 0f (C)]. Then, it is derived that

�
c,_,`
A [Bf (C), 0f (C)] =

1

[1
log

c\B0 (C + 1)/ [Bf (C)]

c\B0 (C)
−

_8 (C)�
c
2 [Bf (C), 0f (C)] − `8 (C)�

c
? [Bf (C), 0f (C)] . (35)

Following the derivation in (31), it is obtained that

Ec∗


∑
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c
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=

1

[1
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∑

0f (C ) ∈A

c∗ [0f (C) |Bf (C)] log
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c\B0 (C)


−

Ec∗


∑

0f (C ) ∈A

_8 (C)c
∗ [0f (C) |Bf (C)]�

c
2 [Bf (C), 0f (C)]


−

Ec∗
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`8 (C)c
∗ [0f (C) |Bf (C)]�

c
? [Bf (C), 0f (C)]


(36)

Using the performance difference theorem for two constraints, it

can be obtained that

Ec∗


∑

0f (C ) ∈A

_8 (C)c
∗ [0f (C) |Bf (C)]�

c
2 [Bf (C), 0f (C)]


= Ec∗ [_8 (C)2 [Bf (C), 0f (C)]] − Ec [_8 (C)2 [Bf (C), 0f (C)]] ,

Ec∗
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c
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Then (31) is derived as
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The first term is derived as

1

[1)

)−1∑
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+
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{Ec∗ [A [Bf (C + 1), 0f (C + 1)]] − Ec∗ [A [Bf (C), 0f (C)]]}

+
1

)
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{Ec∗ [_8 (C + 1)2 [Bf (C + 1), 0f (C + 1)]] −
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_28 () )
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.

where the fact that E(log
? (c )
@ (c )

) ≤ log |c | is used and |c | means the

size of c . The maximal size of c for flow 5 at node 8 is�gmax, then

the total policy for the whole network is #��gmax. The inequality

in (38) uses the expansion of Ec∗ [log/ [Bf (C)]], which is derived

as

1

[1
Ec∗ [log/ [Bf (C)]] ≤

1
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1
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−
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c
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c
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+
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[
_8 (C)�

c
2 [Bf (C), 0f (C)]

]
+ Ec

[
`8 (C)�

c
? [Bf (C), 0f (C)]
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[
�cA [Bf (C), 0f (C)]

]
+ Ec∗

[
_8 (C)�

c
2 [Bf (C), 0f (C)]

]
+

Ec∗

[
`8 (C)�

c
? [Bf (C), 0f (C)]

]
= Ec∗ [A [Bf (C + 1), 0f (C + 1)]] − Ec∗ [A [Bf (C), 0f (C)]]

+ {Ec∗ [_8 (C + 1)2 [Bf (C + 1), 0f (C + 1)]] − Ec∗ [_8 (C)2 [Bf (C), 0f (C)]]}

+ {Ec∗ [`8 (C + 1)? [Bf (C + 1), 0f (C + 1)]] − Ec∗ [`8 (C)? [Bf (C), 0f (C)]]}

The third term of the inequality in (38) is derived by

1

)

)−1∑
C=0

{Ec∗ [_8 (C + 1)2 [Bf (C + 1), 0f (C + 1)]] − Ec∗ [_8 (C)2 [Bf (C), 0f (C)]]}

(39)

=
1

)

)−1∑
C=0

Ec∗ {_8 (C + 1)2 [Bf (C + 1), 0f (C + 1)] − _8 (C)2 [Bf (C), 0f (C)]}

=
1

)
Ec∗

{
)−1∑
C=0

_8 (C + 1)2 [Bf (C + 1), 0f (C + 1)] − _8 (C)2 [Bf (C), 0f (C)]

}

=
1

)
Ec∗ {_8 () )2 [Bf () ), 0f () )] − _8 (0)2 [Bf (0), 0f (0)]}

=
Ec∗ {_8 () )2 [Bf () ), 0f () )]}

)
.

The fourth term of the inequality in (38) is similar to the third term.

Following the same derivation process, it can be derived that

1

)

)−1∑
C=0

{Ec∗ [`8 (C + 1)? [Bf (C + 1), 0f (C + 1)]] − Ec∗ [`8 (C)? [Bf (C), 0f (C)]]}

=
Ec∗ {`8 () )? [Bf () ), 0f () )]}

)
.

(40)

Before deriving the second term of (37), it should be noted that

the update of Lagrangian multiplier _ is

_8 (C + 1) = (_8 (C) + [2Ec [� − 2 [Bf (C), 0f (C)]])+ , (41)

where ()+ denotes the projection into an intervalΛ1 on the positive

real set R+ and [2 is the step size. Since the projection makes the

range of _ smaller, it is obtained that _8 (C+1)−_8 (C) ≤ [2Ec∗ [� − 2 [Bf (C), 0f (C)]].

Note that Ec∗ [2 [Bf (C), 0f (C)]] = � , the second term of (37) is de-

rived as

1

)

)−1∑
C=0

{Ec∗ [_8 (C)2 [Bf (C), 0f (C)]] − Ec [_8 (C)2 [Bf (C), 0f (C)]]}

≥
1

[2)

)−1∑
C=0

Ec {_8 (C) [_8 (C + 1) − _8 (C)]}

=
1

[2)

[
1

2

)−1∑
C=0

Ec

(
_28 (C + 1) − _28 (C)

)
−
1

2

)−1∑
C=0

Ec (_8 (C + 1) − _8 (C))
2

]

=
1

[2)

[
1

2
Ec

(
_28 () )

)
−
1

2

)−1∑
C=0

Ec (_8 (C + 1) − _8 (C))
2

]

=
Ec

(
_28 () )

)
− n_

2[2)
, (42)

where n is the quadratic difference of the iterative step. As the it-

erations go on, _8 (C + 1) and _8 (C) tend to be equal, so n_ is a small

enough finite value.
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The third term of (37) has a similar format as the second term,

so it can be derived that

1

)

)−1∑
C=0

{Ec∗ [`8 (C)? [Bf (C), 0f (C)]] − Ec [`8 (C)? [Bf (C), 0f (C)]]}

≥
Ec

(
`28 () )

)
− n`

2[3)
.

(43)

It should be noted that n` is similar as n2 . Finally, it can be obtained

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'cA [Bf (C)] − '∗Af

}
≤

log#��gmax

[1)
+
Ā)

)
+

Ec∗ {_8 () )2 [Bf () ), 0f () )] + `8 () )? [Bf () ), 0f () )]}

)
−

Ec
(
_28 () )

)
− n_

2[2)
−
Ec

(
`28 () )

)
− n`

2[3)
. (44)

For simplicity, the third term of the above expressions on the right-

hand side is denoted as
_̄2̄+ ¯̀?̄
) . To clearly reflect the influence of

network parameters on optimality, the above formula can be ex-

pressed as

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'cA [Bf (C)] − '∗Af

}
≤

6(#, �,�, gmax)

)

(45)

Therefore, as) approaches infinity, the optimality gap goes to zero,

that is

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'cA [Bf (C)] − '∗Af

}
= O

(
1

)

)
. (46)

E PROOF OF THEOREM 3

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'cA [Bf (C)] − '∗A

}
≤

6(#, �,�, gmax) + @(X2 , X? )

)
. (47)

Recall the number and power of subcarriers with capacity un-

available condition is 2̃f (C) and ?̃f (C), the policy is denoted as c̃

and the parameterized policy is denoted as \̃ . The optimality gap

between the optimal policy c∗ and the policy c with capacity un-

available condition is

1

)

)−1∑
C=0

∑
5 ∈F

∑
f∈P5 (C )

F 5
{
'cÃ [Bf (C)] − '∗A [Bf (C)]

}

=
1

)

)−1∑
C=0

Ec∗


∑

0f (C ) ∈A

c∗ [0f (C) |Bf (C)]�
c
Ã [Bf (C), 0f (C)]


, (48)

For the convenience of derivation, using B = Bf (C) = (8, g) and

0 = 0f (C). After that, it can be derived that

Ec∗

[∑
0∈A

c∗ [0 |B]�cÃ [B, 0]

]
= Ec∗

[∑
0∈A

c∗ [0 |B]�cÃ [B, 0]

]
+

Ec∗

[∑
0∈A

_̃8 (C)c
∗ [0 |B]�c2̃ [B, 0]

]
− Ec∗

[∑
0∈A

_̃8 (C)c
∗ [0 |B]�c2̃ [B, 0]

]
+

Ec∗

[∑
0∈A

˜̀8 (C)c
∗ [0 |B]�c

?̃
[B, 0]

]
− Ec∗

[∑
0∈A

˜̀8 (C)c
∗ [0 |B]�c

?̃
[B, 0]

]
+

Ec∗

[∑
0∈A

c∗ [0 |B] logc (C + 1)

]
− Ec∗

[∑
0∈A

c∗ [0 |B] logc (C + 1)

]

= Ec∗

[∑
0∈A

c∗ [0 |B]�cÃL
[B, 0]

]
− Ec∗

[∑
0∈A

_̃8 (C)c
∗ [0 |B]�c2̃ [B, 0]

]
−

Ec∗

[∑
0∈A

˜̀8 (C)c
∗ [0 |B]�c

?̃
[B, 0]

]
+ Ec∗

[∑
0∈A

c∗ [0 |B] logc (C + 1)

]
−

Ec∗

[∑
0∈A

c∗ [0 |B] logc (C + 1)

]
. (49)

Consider the Taylor expansion of policy c , is can be obtained that

logc\ (C + 1) = logc\ (C) + ∇\ logc\ |\=\ (C ) [\ (C + 1) − \ (C)] +

W [\ (C)] [\ (C + 1) − \ (C)] , (50)

where limC→∞ W [\ (C)] = 0. Therefore, we can derive that

Ec∗

[∑
0∈A

c∗ [0 |B]�cÃ [B, 0]

]
= Ec∗

[∑
0∈A

c∗ [0 |B]�cÃL
[B, 0]

]
−

Ec∗

[∑
0∈A

_̃8 (C)c
∗ [0 |B]�c2̃ [B, 0]

]
− Ec∗

[∑
0∈A

`8 (C)c
∗ [0 |B]�c

?̃
[B, 0]

]
+

Ec∗

[∑
0∈A

c∗ [0 |B] logc (C + 1)

]
− Ec∗

[∑
0∈A

c∗ [0 |B] logc (C)

]
−

Ec∗

[∑
0∈A

c∗ [0 |B] ∇\ logc\ |\=\ (C ) [\ (C + 1) − \ (C)]

]
−

Ec∗

[∑
0∈A

c∗ [0 |B]W [\ (C)] [\ (C + 1) − \ (C)]

]
.
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Merging partial terms of them can be obtained that

Ec∗

[∑
0∈A

c∗ [0 |B]�cÃ [B, 0]

]
=

Ec∗

{∑
0∈A

c∗ [0 |B]
[
�cÃL

[B, 0] − ∇\ logc\ |\=\ (C ) [\ (C + 1) − \ (C)]
]}

+

Ec∗

[∑
0∈A

c∗ [0 |B]
logc (C + 1)

log c̃ (C)

]
−

Ec∗

[∑
0∈A

_̃8 (C)c
∗ [0 |B]�c2̃ [B, 0]

]
− Ec∗

[∑
0∈A

˜̀8 (C)c
∗ [0 |B]�c

?̃
[B, 0]

]
−

Ec∗

[∑
0∈A

c∗ [0 |B]W [\ (C)] [\ (C + 1) − \ (C)]

]
.

Using the transformation and the performance difference theorem,

it can be obtained that

�cAL [B, 0] = ∇\ logc\ |\=\ (C ) [\ (C + 1) − \ (C)] , (51)

Ec∗

[∑
0∈A

_̃8 (C)c
∗ [0 |B]�c2̃ [B, 0]

]
=

Ec∗ [_8 (C + 1)2 [Bf (C + 1), 0f (C + 1)]] − Ec∗ [_8 (C)2 [Bf (C), 0f (C)]] ,

(52)

Ec∗

[∑
0∈A

˜̀8 (C)c
∗ [0 |B]�c

?̃
[B, 0]

]
=

Ec∗ [`8 (C + 1)? [Bf (C + 1), 0f (C + 1)]] − Ec∗ [`8 (C)? [Bf (C), 0f (C)]] .

(53)

It can be then derived that

Ec∗

[∑
0∈A

c∗ [0 |B]�cÃ [B, 0]

]
= Ec∗

{∑
0∈A

c∗ [0 |B]
[
�cÃL

[B, 0] −�cAL [B, 0]
]}

−

Ec∗ [_8 (C + 1)2 [Bf (C + 1), 0f (C + 1)]] + Ec∗ [_8 (C)2 [Bf (C), 0f (C)]] −

Ec∗ [`8 (C + 1)? [Bf (C + 1), 0f (C + 1)]] + Ec∗ [`8 (C)? [Bf (C), 0f (C)]] +

Ec∗

[∑
0∈A

c∗ [0 |B]
logc (C + 1)

logc (C)

]
− Ec∗

[∑
0∈A

c∗ [0 |B]W [\ (C)] [\ (C + 1) − \ (C)]

]
.

Therefore, it can be obtained that

1

)

)−1∑
C=0

Ec∗

[∑
0∈A

c∗ [0 |B]�cÃ [B, 0]

]
≤

1

)

)−1∑
C=0

Ec∗

{∑
0∈A

c∗ [0 |B]
[
�cÃL

[B, 0] −�cAL [B, 0]
]}

−
_̃2̄

)
−

˜̀?̄

)
+

log#��gmax

[1)
−
W [\ () )] \̄)

)
,

where the second, third, and fourth term in the right-hand side

use the same derivation process in Appendix D. The last term has

the similar expression as that of the second and third term, so it is

derived using the same process. Using the expansion of�cA [B, 0] in

(34) of Theorem 2 to �c
Ã
[B, 0], it can be derived that

1

)

)−1∑
C=0

Ec∗

{∑
0∈A

c∗ [0 |B]
[
�c
ÃL
[B, 0] −�cAL [B, 0]

]}
≤

Ec∗

[
log c̃)c)

]
[1)

+
1

[1)

)−1∑
C=0

Ec∗

{∑
0∈A

c∗ [0 |B]
[
log /̃ (B) − log/ (B)

]}

=

Ec∗

[
log c̃)c)

]
[1)

+
1

)
{Ec∗ [Ã [Bf () ), 0f () )]] − Ec∗ [A [Bf () ), 0f () )]]}

+
1

)

{
Ec∗

[
_̃8 () )2̃ [Bf () ), 0f () )]

]
− Ec∗ [_8 () )2 [Bf () ), 0f () )]]

}
+
1

)
{Ec∗ [ ˜̀8 () )?̃ [Bf () ), 0f () )]] − Ec∗ [`8 () )? [Bf () ), 0f () )]]}

It should be noted that the third and fourth term of the above ex-

pressions are affected by the difference of number of subcarriers

and power. Suppose the third term is denoted by X2 and the fourth

term is denoted by X? , it can be obtained that

1

)

)−1∑
C=0

Ec∗

[∑
0∈A

c∗ [0 |B]�cÃ [B, 0]

]
≤

6(#, �,�, gmax) + @(X2 , X? )

)
,

(54)

where

@(X2 , X? ) =
Ec∗

[
log c̃)c)

]
[1

+ Ã) − 2Ā) + X2 + X? − 2_̄2̄ − 2 ¯̀?̄−

W [\ () )] \̄) +
Ec

(
_28 () )

)
− n_

2[2
+
Ec

(
`28 () )

)
− n`

2[3
(55)

It should be noted that @(X2 , X? ) is still a finite value. Therefore, as

) approaches infinity, the optimality gap goes to zero.
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