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Supplementary Material for Federated Label-Noise
Learning with Local Diversity Product Regularization

I. PROOF OF THEOREM 1
For the optimization problem

min
w,T̃

{
1

N

N∑
i=1

L(ỹi, T̃
⊤
f(xi;w))− λ log det(PP⊤ + I)

}
, (1)

its optimal solution (w∗,T) satisfies
P̃ = T⊤P∗,

where the matrix of noisy class posterior P̃ is a constant matrix determined by the noisy dataset. Moreover, P∗ satisfies

P∗ = argmax
w

det (PP⊤), (2)

where P = [f(x1;w), ..., f(xN ;w)].
According to the theory of transition matrix decomposition in [1], for any solution (w, T̃) to P̃ = T̃

⊤
P, its P can be written

as
P = V⊤P∗, (3)

where V is a contraction matrix and each row of V is a probability vector. Based on (2), it can be obtained that

det(P∗P∗⊤) ≥ det(PP⊤)

= det(V⊤P∗P∗⊤V)

= det(V)2 det(P∗P∗⊤).

Thus, det(V) ≤ 1.
Similar to

PP⊤ =

M∑
m=1

PmP⊤
m, (4)

P∗P∗⊤ can be decomposed as

P∗P∗⊤ =

M∑
m=1

P∗
mP∗⊤

m . (5)

Substitute equation (3) and equation (5) into equation (4), then

PP⊤ =

M∑
m=1

PmP⊤
m =

M∑
m=1

V⊤P∗
mP∗⊤

m V.

If P∗
mP∗⊤

m is a full rank matrix, then

det(PmP⊤
m) = det(V⊤P∗

mP∗⊤
m V)

= det(V)2 det(P∗
mP∗⊤

m )

≤ det(P∗
mP∗⊤

m ).

As a result, det(PmP⊤
m + I) ≤ det(P∗

mP∗⊤
m + I), and

M∏
m=1

det(PmP⊤
m + I) ≤

M∏
m=1

det(P∗
mP∗⊤

m + I). (6)

If P∗
mP∗⊤

m is not a full rank matrix, then the product of its non-zero eigenvalues is larger than or equal to that of PmP⊤
m.

By adding an identity matrix to P∗
mP∗⊤

m , the obtained matrix becomes a full rank matrix. The same result as equation (6) can
then be obtained. Hence,

P∗ = argmax
w∈W

M∏
m=1

det(PmP⊤
m + I),

and the proof is completed.
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TABLE I
HYPERPARAMETER SETTINGS FOR FEDLNL.

Hyperparameters CIFAR-10 CIFAR-100 Clothing1M [11]

flip-0.2 flip-0.4 flip-0.45 sym-0.2 sym-0.4 sym-0.5 asym-0.4 flip-0.2 flip-0.4 flip-0.45 real-world

λ 0.020 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.050
α1 0.990 0.990 0.990 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.990
α2 0.010 0.010 0.020 0.030 0.030 0.080 0.010 0.100 0.100 0.100 0.030

TABLE II
TEST ACCURACIES (%) OF THE SELECTED SCHEMES OVER CIFAR-10 DATASET UNDER DIFFERENT SETTINGS OF LOCAL TRAINING SAMPLES

(PAIR-FLIPPING NOISE, NOISE RATE 0.4).

Schemes 5000 500
samples/clients samples/clients

FedLSR 82.7 78.3
FedCorr 86.3 75.3
RoFL 89.9 80.4
VolMinNet-FL 90.4 69.1

II. DETAILED EXPERIMENTAL SETUP

A. Synthesis noise patterns

Three types of label-noise are used in the experiments: pair flipping (denoted as flip)[2], symmetry (denoted as sym) [3], and
asymmetry (denoted as asym) [4]. Pair flipping noise is generated by replacing the clean label i with the noisy label (i+ 1) for
a percentage of training data1, where the percentage is determined by the noise rate. Symmetric noise is generated by randomly
replacing the clean label i with all possible labels but i for a percentage of training data. Asymmetric noise is designed by
simulating the structure of real-world label-noise, where a clean label is only replaced by a noisy label of similar classes (e.g.
dog↔cat and deer→horse).

The noise rate of pair flipping noise and symmetry noise is selected from {0.2, 0.4, 0.45} and {0.2, 0.4, 0.45}, respectively,
while the noise rate of asymmetry noise is set to 0.4. To insert label-noise into the clean training data, an NTM is first generated,
based on the selected type of label-noise and the selected value of noise rate. According to the NTM, the training data of
CIFAR-10 and CIFAR-100 are then manually corrupted.

B. Hyperparameter settings

The compared schemes can be divided into two groups. The first group represents the schemes extended to the FL framework,
i.e., S-adaptation-FL, VolMinNet-FL, and DivideMix-FL. The second group represents the original FL schemes that tackles
label-noise issues, i.e, RoFL [5], FedLSR [6], and FedCorr [7].

For the schemes in the first group, they have two types of hyperparameters: the first type is their original hyperparameters
proposed in the CL setting, and the second type is the hyperparameters introduced by the FL framework. For the first type of
hyperparameters, we refer to their original papers [8], [9], [10] to determine the settings for their hyperparameters.

As for the second type of hyperparameters, the number of local iterations is set to 3, 3, and 5 for S-adaptation-FL, VolMinNet-
FL, and DivideMix-FL, respectively. The rest hyperparameters related to the FL framework are the same as that of FedLNL,
e.g., the learning rate and the batch size.

Since the schemes in the second group are designed for the FL framework, we refer to their original papers [5], [6], [7] to
determine the settings for their hyperparameters.

In our scheme FedLNL, except for the hyperparameters related to the FL framework, there are three hyperparameters: the
weight λ for the local diversity product (LDP) regularizer and the two weights α1 and α2 in the update rule of the local
concentration matrix Dm

Dm ← α1Dm + α2Cm.

The values of these three hyperparameter are presented in Table I.

1For label 9 in CIFAR-10 and label 99 in CIFAR-100, they are replaced by label 0
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TABLE III
TEST ACCURACIES (%) OF THE SELECTED SCHEMES OVER CIFAR-10 DATASET UNDER DIFFERENT SETTINGS OF LOCAL TRAINING SAMPLES

(PAIR-FLIPPING NOISE, NOISE RATE 0.4).

Schemes 5000 500
samples/clients samples/clients

RoFL 89.9 80.4
VolMinNet-FL 90.4 69.1
Accurate NTM 90.7 89.2
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